C02: Interactions of snow on sea ice with atmospheric constituents including black carbon

Project ended 2019

The major scientific achievements of phase I were:

  • Confirmation of the annual cycle of high BC concentrations during spring (PAMARCMiP) and low BC concentrations during early summer (ACLOUD)
  • BC concentration in the snow is controlled by snow melting
  • Cloud presence is the major driver of BC vertical distribution during the Arctic summer.
  • The detection of BC from spectral albedo measurements is strongly affected by other snow properties and with current instrumentation impossible.
  • The direct radiative forcing by atmospheric BC is minor compared to the absorption by water vapor.
  • The instantaneous radiative forcing by BC in snow is minor compared to changes of snow grain size (snow metamorphism).

Based on the findings, that over Arctic sea ice the instantaneous radiative effects of BC on the surface albedo are low compared to the impact of snow grain size and that the sensitivity of remote sensing for Arctic BC concentrations is not sufficient, a continuation of this project aspect is no considered. However, in situ measurements of atmospheric BC and BC in snow remains a highly relevant task for investigation the role of BC particles for cloud formation and precipitation. This project part will be continued in B04.

Hypothesis:

Solar energy absorbed by BC–containing aerosol particles leads to a warming of the near–surface air when locally produced/emitted constituents reside at low altitudes and are partly deposited onto the snow surface. Contrarily, long–range transport of BC into the Arctic, remaining in higher atmosphere layers, will lead to a cooling of the surface.

Achievements phase I

The radiative forcing of BC particles suspended in the atmosphere or deposited in snow over sea ice was estimated in C02 on the basis of recent measurements of Arctic BC concentrations (Kodros et al., 2018; Zanatta et al., 2018). The observations confirmed the annual cycle of high BC concentrations in spring (PAMARCMiP) and low BC concentrations in early summer (ACLOUD) (Schulz et al., 2019).
Consequently, the direct radiative forcing of atmospheric BC strongly depends on the season, but, it was found to be of minor importance compared to other atmospheric constituents such as water vapour. BC concentrations in snow are observed to accumulate at the surface by melting of snow. However, the measured BC concentrations within the snow were too low to significantly contribute to a reduction
of the snow albedo, which is dominated by the increase of snow grains due to snow methamorphism (factor of 10 between both effects). A detection of BC from spectral surface albedo measurements with current instrumentation was, therefore, impossible. Furthermore, the BC concentrations in cloud forming particles were measured. These investigations revealed that the presence of clouds is the major driver of BC vertical distribution during the Arctic summer. Project C02 will not be continued.

Role within (AC)³

matrix_C02

Members

Dr. Marco Zanatta

Postdoc

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

phone:

++49 (0) 471 483 11827

e-mail:

marco.zanatta[at]awi.de

Dr. Andreas Herber

Principal Investigator

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Bussestraße 24
27570 Bremerhaven

phone:

++49 (0) 471 483 1489

e-mail:

Andreas.Herber[at]awi.de

Dr. André Ehrlich

Principal Investigator

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32874

e-mail:

a.ehrlich[at]uni-leipzig.de

Tobias Donth

PhD

University of Leipzig

Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 36656

e-mail:

tobias.donth[at]uni-leipzig.de

Publications

2020

Donth, T., Jäkel, E., Ehrlich, A., Heinold, B., Schacht, J., Herber, A., Zanatta, M., and Wendisch, M., 2020: Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic, Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020.

Zanatta, M., H. Bozem, F. Köllner, J. Schneider, D. Kunkel, P. Hoor, J. de Faria, A. Petzold, U. Bundke, K. Hayden, R. M. Staebler, H. Schulz & A. B. Herber, 2020: Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect, Tellus B: Chemical and Physical Meteorology, 72:1, 1-24, DOI: 10.1080/16000889.2019.1695349

2019

Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-11-1853-2019

Jacobi, H.-W., Obleitner, F., Da Costa, S., Ginot, P., Eleftheriadis, K., Aas, W., and Zanatta, M., 2019: Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling, Atmos. Chem. Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019.

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Schulz, H., H. BozemM. Zanatta, W.R. Leaitch, A.B. Herber, J. Burkart, M.D. Willis, P.M. Hoor, J.P.D. Abbatt, and R. Gerdes, 2019: High–Arctic aircraft measurements characterising black carbon vertical variability in spring and summer, Atmos. Chem. Phys., 19, 2361-2384, doi:10.5194/acp-19-2361-2019

Willis, M.D., H. Bozem, D. Kunkel, A.K.Y. Lee, H. Schulz, J. Burkart, A.A. Aliabadi, A.B. Herber, W.R. Leaitch, and J.P.D. Abbatt, 2019: Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition, Atmos. Chem. Phys., 19, 57-76, doi:10.5194/acp-19-57-2019

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. MaturilliM. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

M. Zanatta, P. Laj, M. Gysel, U. Baltensperger, S. Vratolis, K. Eleftheriadis, Y. Kondo, P. Dubuisson, V. Winiarek, S. Kazadzis, P. Tunved, and H.-W. Jacobi, 2018: Effects of mixing state on optical and radiative properties of black carbon in the European Arctic, Atmos. Chem. Phys. Disc., 18, 14037-14057, doi:10.5194/acp-2018-14037-2018

Kodros, J.K., S.J. Hanna, A.K. Bertram, W.R. Leaitch, H. Schulz, A.B. Herber, M. Zanatta, J. Burkart, M.D. Willis, J.P.D. Abbatt, and J.R. Pierce, 2018: Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect, Atmos. Chem. Phys., 18, 11345-11361, doi:/10.5194/acp-18-11345-2018

Carlsen, T., Birnbaum, G., Ehrlich, A., Freitag, J., Heygster, G., Istomina, L., Kipfstuhl, S., Orsi, A., Schäfer, M., and Wendisch, M., 2017: Comparison of different methods to retrieve effective snow grain size in central Antarctica, Cryosph.11, 2727-2741, doi:10.5194/tc-2016-294
Data supplement is available here.

Ehrlich, A., Bierwirth, E., Istomina, L., and Wendisch, M., 2017: Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing, Atmos. Meas. Tech., 10, 3215-3230, doi:10.5194/amt-10-3215-2017
Data supplement is available here.

Becker, S., 2017: Räumliche Variabilität der Schneekorngröße in der Antarktis und Vergleich mit Satellitenmessungen, Bachelor Thesis, University of Leipzig

Project Poster

C02_Poster_fin_pII
C02_Poster_fin_pI