D03: Interactions between atmosphere and sea ice in the Arctic

PIs: Annette Rinke, Gunnar Spreen

The central aim of the project is (i) the improvement in understanding of feedback mechanisms between the atmosphere and sea ice–ocean in the Arctic and (ii) a quantification of the individual contributions of atmospheric circulation, Atmospheric Boundary Layer (ABL) and cloud processes, and sea ice changes to recently observed Arctic climate change. The differences between the observed sea ice retreat and simulation results from state–of–the–art regional coupled climate models will be assessed. Ensemble simulations with the coupled regional atmosphere–sea ice–ocean model of the Arctic climate system HIRHAM–NAOSIM are compared with new satellite–derived sea ice concentration, thickness and snow depth data. One of the main objectives is to realistically simulate the regional patterns of Arctic sea ice loss, changes in sea ice and snow thickness, and sea ice drift patterns. The aim is to identify and quantify the individual external and internal drivers and feedback mechanisms behind these changes. Combined with a comprehensive model evaluation, a series of model sensitivity studies with respect to key processes (sea ice/snow albedo, vertical mixing in the ABL, mixed–phase clouds) will help to quantify and improve the associated regional feedback processes in the model. Furthermore, we will attribute the Arctic Amplification to regional feedback processes arising from non–linear interactions between the atmosphere and sea ice–ocean and to the large–scale atmospheric circulation patterns and synoptic–scale processes including cyclones.

Hypothesis: Regional feedback processes arising from interactions between the atmosphereand sea ice-ocean and changes in the large-scale atmospheric circulation patterns are criticalmechanisms for the Arctic Amplification.

In order to test the hypothesis, we will address the following central questions:

  • What are the mechanisms for the rapid Arctic sea ice loss?
  • Which are the involved key regional atmosphere–sea ice feedback mechanisms?
  • How can they appropriately be described in climate models?

Role within (AC)³

  • D03 provides sea-ice data and regional feedback descriptions
  • D03 relies on the data from (AC)³ for process- and climate-oriented evaluation
matrix_D03

Members

Prof. Dr. Klaus Dethloff

Corresponding Member

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Telegrafenberg A43
14473 Potsdam

phone:

++49 (0) 331 288 2104

e-mail:

Klaus.Dethloff[at]awi.de

Philip Rostosky

PhD

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62173

e-mail:

prostosky[at]iup.physik.uni-bremen.de

Dr. Wolfgang Dorn

PostDoc

Alfred-Wegener-Insitute Helmhotz Center for Polar and Marine Research (AWI)
Telegrafenberg A43
14473 Potsdam

phone:

++49 (0) 331 288 2164

e-mail:

Wolfgang.Dorn[at]awi.de

Dr. Gunnar Spreen

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62190

e-mail:

gunnar.spreen[at]uni-bremen.de

Dr. Annette Rinke

Principal Investigator

Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research (AWI)
Telegrafenberg A43
14473 Potsdam

phone:

++49 (0) 331 288 2130

e-mail:

Annette.Rinke[at]awi.de

Publications

Pațilea, C., G. Heygster, M. Huntemann, and G. Spreen, 2017: Combined SMAP/SMOS Thin Sea Ice Thickness Retrieval. The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-168 (under review for The Cryosphere).

Itkin, P., G. Spreen, S.M. Hvidegaard, H. Skourup, J. Wilkinson, S. Gerland, and M.A. Granskog, 2017: Contribution of deformation to sea-ice mass balance: a case study from an N-ICE2015 storm. Submitted to Geophys. Res. Lett., in review.

Lu, J., G. Heygster, and G. Spreen, 2017: Atmospheric Correction of Sea Ice Concentration Retrieval for 89 GHz AMR-E Observations. Submitted to IEEE JSTARS. In review.

Akperov, A. Rinke, and the Arctic Cordex Team, 2017: Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX), J. Geophys. Res., submitted

M. Zahn, M. Akperov, A. Rinke, F. Feser, I.I. Mokhov, 2017: Trends of cyclone characteristics in the Arctic and their patterns from different re-analysis data, J. Geophys. Res., submitted

Rinke, A., M. Maturilli, R.M. Graham, H. Matthes, D. Handorf, L. Cohen, S.R. Hudson, and J.C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends, Envir. Res. Lett., doi:10.1088/1748-9326/aa7def

Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, and M. A. Granskog, 2017: Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974–6983, doi:10.1002/2017GL073395

Graham, R.M., A. Rinke, L. Cohen, S.R. Hudson, V.P. Walden, M.A. Granskog, W. Dorn, M. Kayser, M. Maturilli, 2016: A comparison of the two Arctic atmospheric winter states observed during N‐ICE2015 and SHEBA,  J. Geophys. Res. Atm., doi: 10.1002/2016JD025475

Project Poster