B05: Variability and trends of water vapour in the Arctic
PIs: Kerstin Ebell, Gunnar Spreen (former PIs: Susanne Crewell, Annette Rinke, Georg Heygster)
Water vapour being the strongest greenhouse gas is a key candidate for contributing to Arctic amplification. However, as shown in phase I of (AC)³ the lack of widespread reference water vapour observations together with its pronounced temporal and regional variability hampers a firm assessment of the role of water vapour for Arctic amplification. In the past a robust positive trend in integrated water vapour (IWV) from reanalyses could only be revealed for few regions and seasons. The pronounced spatial patterns can not be captured by the classical radiosonde network, which requires satellite measurements. Embedded in the Global Energy and Water Exchanges (GEWEX) Water Vapour Assessment (G-VAP) a comparison of different integrated water vapour products including the satellite product developed in B05 revealed large differences for the central Arctic, which we will investigate making use of the detailed observations during MOSAiC from the ground and by aircraft. In the Arctic, microwave satellite IWV retrievals are complicated by the strong emission of sea ice compared to ocean. Therefore, a new optimal estimation retrieval scheme will be developed that simultaneously retrieves sea ice characteristics and water vapour plus liquid water path information. Microwave radiometer (MWR) observations of snow and sea ice from the ground to be collected during MOSAiC will support the development. Similarly, a novel high frequency MWR operated on board RV Polarstern will serve as a reference for IWV measurements in the Arctic. The impact of water vapour on downward thermal-infrared radiation depends on the vertical distribution of moisture which is even more difficult to assess than IWV. Here we will make use of multi-spectral, ground–based MWR measurements, possibly combined with satellite measurements, to assess moisture inversions, which are of high importance in sustaining mixed-phase
clouds. The effect on downward thermal-infrared radiation will be investigated by taking the role of LWP into account, which is retrieved along with IWV.
The observations from the ground, aircraft, and satellite will be used to validate existing and upcoming reanalyses, e.g., ERA5, Arctic System Reanalysis (ASR), and the emerging Copernicus reanalysis. Special emphasis will be put on extreme events like atmospheric rivers in cooperation with E04, which are highly variable.
Hypothesis:
The consideration of temporal and regional variability of water vapour is necessary to establish the role of water vapour for Arctic amplification.
Specifically we want to answer the following questions:
- Does an improved consideration of surface emission improve satellite water vapour retrievals such that quantifying the water vapour feedback in the Arctic becomes possible?
- Can we explain the strong water vapour differences between water vapour products (reanalyses, satellites) using the reference measurements from the MOSAiC and HALO–(AC)³ campaigns?
- Do new satellite instruments have the potential to provide the needed information on water vapour profiles to assess the water vapour impact on downward thermal-infrared radiation?
Achievements phase I
In B05, new retrieval techniques to derive the Integrated Water Vapour (IWV) from satellite have been developed allowing continuous measurements of IWV fields over the ocean and sea ice by merging observations from different microwave satellite sensors (Scarlat et al., 2017; Triana Gómez et al., 2018; Triana Gómez et al., submitted 2019). A quantification of the uncertainty of trends in total water vapour based on reanalysis was performed (Rinke et al., 2019). Simulations of microwave brightness temperature for polar lows were carried out. Furthermore, an evaluation of IWV from satellite products, reanalyses, and HIRHAM simulations was done for the ACLOUD campaign. Also, an investigation of the relationship between IWV and thermal-infrared downward radiation in reanalyses and models was performed for the period of 1979-2016.
Role within (AC)³
Members
Andreas Walbröl
PhD
University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne
Dr. Gunnar Spreen
Principal Investigator
University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen
Dr. Annette Rinke
Principal Investigator
Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research (AWI)
Telegrafenberg A45
14473 Potsdam
Dr. Christian Melsheimer
Senior Scientist
University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen
Janna Rückert
PhD
University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen
Dr. Kerstin Ebell
Principal Investigator
University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne
Prof. Dr. Susanne Crewell
Principal Investigator
University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne
Former Members
Leif-Leonard Kliesch
PhD (in phase I)
University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne
Dr. Georg Heygster
Principal Investigator
University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen
Dr. Arantxa Triana Goméz
PhD (in phase I)
University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen
Dr. Ana Radovan
PhD (in phase I)
University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne
Publications
2023
Thielke, L.; Spreen, G.; Huntemann, M. & Murashkin, D., 2023: Spatio-temporal variability of small-scale leads based on helicopter winter sea ice surface temperatures, EarthArXiv, https://doi.org/10.31223/X5R07W, [preprint]
Walbröl, A.; Michaelis, J.; Becker, S.; Dorff, H.; Gorodetskaya, I.; Kirbus, B.; Lauer, M.; Maherndl, N.; Maturilli, M.; Mayer, J.; Müller, H.; Rückert, J.; Schirmacher, I.; Slättberg, N.; Röttenbacher, J.; Ehrlich, A.; Wendisch, M. & Crewell, S., 2023: Environmental conditions during the HALO–(AC)3 campaign in the North Atlantic sector of the Arctic, EGUsphere, https://doi.org/10.5194/egusphere-2023-668, [preprint]
Rückert, J. E.; Rostosky, P.; Huntemann, M.; Clemens-Sewall, D.; Ebell, K.; Kaleschke, L.; Lemmetyinen, J.; Macfarlane, A. R.; Naderpour, R.; Stroeve, J.; Walbröl, A. & Spreen, G., 2023: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition, Elem. Sci. Anth., https://doi.org/10.31223/X5VW85, [preprint]
Kirbus, B.; Tiedeck, S.; Camplani, A.; Chylik, J.; Crewell, S.; Dahlke, S.; Ebell, K.; Gorodetskaya, I.; Griesche, H.; Handorf, D.; Höschel, I.; Lauer, M.; Neggers, R.; Rückert, J.; Shupe, M. D.; Spreen, G.; Walbröl, A.; Wendisch, M. & Rinke, A., 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1147848
Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1
2022
Lu, J., Scarlat, R., Heygster, G., & Spreen, G., 2022. Reducing weather influences on an 89 GHz sea ice concentration algorithm in the Arctic using retrievals from an optimal estimation method. J. Geophys. Res. Oceans, 127, e2019JC015912. https://doi.org/10.1029/2019JC015912
Walbröl, A., Crewell, S., Engelmann, R., Orlandi, E., Grische, H., Radenz, M., Hofer, J., Althausen, D., Maturilli, M. & Ebell, K., 2022: Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci Data 9, 534. https://doi.org/10.1038/s41597-022-01504-1
Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere. Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.
Bresson, H., Rinke, A., Mech, M., Reinert, D., Schemann, V., Ebell, K., Maturilli, M., Viceto, C., Gorodetskaya, I., and Crewell, S., 2022: Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation, Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022.
2021
Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J., 2021: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021.
Crewell, S., Ebell, K., Konjari, P., Mech, M., Nomokonova, T., Radovan, A., Strack, D., Triana-Gómez, A. M., Noël, S., Scarlat, R., Spreen, G., Maturilli, M., Rinke, A., Gorodetskaya, I., Viceto, C., August, T., and Schröder, M., 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021.
2020
Radovan, A., 2020: Variability and trends of Arctic water vapour from passive microwave satellites – Special Role of Polar Lows and Atmospheric Rivers, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/53609.
Triana-Gómez, A. M., Heygster, G., Melsheimer, C., Spreen, G., Negusini, M., and Petkov, B. H., 2020: Improved water vapour retrieval from AMSU-B and MHS in the Arctic, Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020.
Scarlat, R. C., G. Spreen, G. Heygster, M. Huntemann, C. Patilea, L. Toudal Pedersen, and R. Saldo, 2020. Sea Ice and Atmospheric Parameter Retrieval From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With the CIMR Candidate Mission. J. Geophys. Res. Oceans, 125(3), e2019JC015749. https://doi.org/10.1029/2019JC015749
2019
Rinke, A., B. Segger, S. Crewell, M. Maturilli, T. Naakka, T. Nygaard, T. Vihma, F. Alshawaf, G. Dick, and J. Wickert, and J. Keller, 2019: Trends of vertically integrated water vapor over the Arctic during 1979-2016: Consistent moistening all over? J. Clim., 32, 6096-6116, doi:10.1175/JCLI-D-19-0092.1
Radovan A., S. Crewell, E.M. Knudsen, and A. Rinke, 2019: Environmental conditions for polar low formation and development over the Nordic Seas: study of January cases based on the Arctic System Reanalysis, Tellus A, 71 (1), 1-16, doi:10.1080/16000870.2019.1618131
Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. Heinold, A. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1
2018
Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. Maturilli, M. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018
Triana Gómez, A., G. Heygster, C. Melsheimer, and G. Spreen, 2018: Towards a Merged Total Water Vapour Retrieval from AMSU-B and AMSR-E Data in the Arctic Region, Proceedings of the “IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium,” IEEE, Valencia, 1818–1821, doi:10.1109/igarss.2018.8517863
Scarlat, R. C., C. Melsheimer, and G. Heygster, 2018: Retrieval of Total Water Vapour in the Arctic Using Microwave Humidity Sounders, Atmos. Meas. Tech., 11, 2067-2084, doi:10.5194/amt-11-2067-2018
Bühl, J., Alexander, S., Crewell, S., Heymesfield, A., Kalesse, H., Khain, A., Maahn, M., van Tricht, K., Wendisch, M., 2017: Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 10: Remote Sensing, AMS Meteorological Monographs, 58, 10.1-10.21, doi:10.1175/AMSMONOGRAPHS-D-16-0015.1