B06: Latitudinal variability of water vapour, aerosols, and optically thin clouds

Project ended 2019

The topic of this project was to investigate the spatial structure of the Arctic atmosphere during a ship cruise in the Fram strait and around Spitsbergen. We participitated in the Polarstern cruises PS106 and PS107, where we operated the mobile FTIR facility MOFTIR. MOFTIR consisted of two FTIR instruments, ABS-FTIR operated in solar absorption geometry, EM-FTIR operated in emission
geometry. At the same time measurements with a similar suite of instruments were performed at the AWIPEV research base, Spitsbergen. The ship–borne observation are interpreted in close connection with the measurements obtained in Ny–Ålesund in the project E02.


The latitudinal variability of water vapour, aerosols, and thin clouds from mid–latitudes to the high Arctic impacts on Arctic climate changes.

In order to test the hypothesis, we will address and contribute to the following central questions exemplarily with the first ship cruise in phase I:

  • How large is the latitudinal variability of aerosols, water vapour and thin clouds between the North Atlantic ice edge and the inner Arctic?
  • How can the effect of the spatial atmospheric fine structure be parameterized using the time series obtained by the standard measurement stations and the satellite measurements?
  • With the help of models, how does the spatial fine structure of the Arctic atmosphere affect the radiative budget of the Arctic atmosphere in summer?

Achievements phase I

In B06, measurements to investigate the spatial structure of the Arctic atmosphere were collected during two ship expeditions and the ground-based, long-term CONCORD observations at Ny-Ålesund. A retrieval scheme to derive cloud properties from thermal emission infrared spectrometer measurements, including detailed radiative transfer simulations, was developed and applied, which will be used in E02.
Three papers report about the results in detail (Barthlott et al., 2017; Kulla and Ritter, 2019; Ritter et al., 2018). The project prepared important input for E02, however, it was found that the original objective of latitudinal variability is more appropriately characterised via long-term satellite data and, therefore, will be pursued in B05. Project B06 will not be continued.

Role within (AC)³



Philipp Richter


University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen


++49 (0) 421 218 62174


Prof. Dr. Justus Notholt

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen


++49 (0) 421 218 62190



Dr. Roland Neuber

Principal Investigator

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Telegrafenberg A43
14473 Potsdam


++49 (0) 331 288 2129




Konstantina Nakoudi


Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research (AWI)
Telegrafenberg A45
14473 Potsdam


++49 (0) 331 288 2167





Nakoudi, K., Stachlewska, I.S. and Ritter, C., 2021. An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site. Opt. Express29(6), pp.8553-8580. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-6-8553&id=448923


Richter, P., Palm, M., Weinzierl, C., Griesche, H., Rowe, P. M., and Notholt, J., 2020: Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-266, in review.

Nakoudi, K.; Ritter, C.; Böckmann, C.; Kunkel, D.; Eppers, O.; Rozanov, V.; Mei, L.; Pefanis, V.; Jäkel, E.; Herber, A.; Maturilli, M.; Neuber, R. ,2020. Does the Intra-Arctic Modification of Long-Range Transported Aerosol Affect the Local Radiative Budget? (A Case Study). Remote Sens., 12, 2112, https://www.mdpi.com/2072-4292/12/13/2112.


Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-11-1853-2019

Schranz, F., Tschanz, B., Rüfenacht, R., Hocke, K., Palm, M., and Kämpfer, N., 2019: Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund, Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019.

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Kulla, B.S., and C. Ritter, 2019: Water Vapor Calibration: Using a Raman Lidar and Radiosoundings to Obtain Highly Resolved Water Vapor Profiles, Remote Sensing11 (6), 616; doi:10.3390/rs11060616


Kautzleben, A., 2017: Optically thin clouds over Ny-Ålesund: Dependence on meteorological parameters and effect on the surface radiation budget, Master Thesis, Universität Potsdam, http://hdl.handle.net/10013/epic.51460.d001

Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones, N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S., Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., and Langerock, B., 2017: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC, Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017.

Taquet, N., Meza Hernández, I. Stremme, W., Bezanilla, A., Grutter, M., Campoin, R., Palm, M., and Boulestreix, T., 2017: Contiunous measurements of SiF4 and So2 by thermal emissions spectroscopy: Insight from a 6-month survy at the Popocatépetl volcano, J. Volcanol. Geoth. Res., 341, 255-268, doi:10.1016/j.volgeores.2017.05.009

Buschmann, M., N.M. Deutscher, M. Palm, T. Warneke, C. Weinzierl, and J. Notholt, 2017: The arctic seasonal cycle of total column CO2 and CH4 from ground-based solar and lunar FTIR absorption spectrometry, Atmos. Meas. Tech., 10, 2397-2411, doi:10.5194/amt-10-2397-2017

Barthlott, S., Schneider, M., Hase, F., Blumenstock, T., Kiel, M., Dubravica, D., García, O. E., Sepúlveda, E., Mengistu Tsidu, G., Takele Kenea, S., Grutter, M., Plaza-Medina, E. F., Stremme, W., Strong, K., Weaver, D., Palm, M., Warneke, T., Notholt, J., Mahieu, E., Servais, C., Jones, N., Griffith, D. W. T., Smale, D., and Robinson, J., 2017: Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra, Earth Syst. Sci. Data, 9, 15-29, doi:10.5194/essd-9-15-2017

Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803

Project Poster