C01: Influence of surface heterogeniety on radiative forcing and retrieval of aerosol and cloud properties in the Arctic

PIs: Manfred Wendisch, Georg Heygster

In the Arctic, a discontinuous albedo contrast between highly reflecting snow/ice and mostly absorbing sea surfaces is typical. So far it has not been quantified how these surface reflection heterogeneities affect the (i) the radiative forcing of clouds (warming/cooling), and (ii) the remote sensing products of clouds and aerosol particles. To quantify these effects, airborne measurements and Radiative Transfer (RT) modelling studies are proposed. An imaging spectrometer for measuring reflected radiances with high temporal and spatial resolution, combined with a digital camera, will be installed on the Polar 5 & 6 aircraft to measure the reflectance during ACLOUD (Arctic Clouds – Characterization of Ice, aerosol Particles and Energy fluxes) in 2017. Simultaneously, spectral irradiances reflected by the surface will be measured to deduce the surface albedo. Furthermore, a three–dimensional (3D) radiative transfer (RT) model will be applied to reproduce the airborne measurements in different spatial resolutions. The results of the measurements will be compared to satellite–derived surface reflection properties, in particular the Bidirectional Reflectance Distribution Function (BRDF) and albedo. The measured spatial and spectral distribution of BRDF and surface albedo will serve as input for 3D (three–dimensional) RT simulationsto quantify 3D radiative effects and their sensitivity on the retrieval of cloud and aerosol properties as well as the sensitivity on the radiative cooling or warming by Arctic clouds, which influence feedback mechanisms within the Arctic Amplification. We will investigate, if 1D assumptions are sufficient to quantify the radiative cooling or warming due to clouds for a representative area for heterogeneous surfaces. Measurements of terrestrial broadband radiation will be used to determine the net radiative effects.

Hypothesis: The radiative warming (or cooling) due to Arctic clouds is sensitive to the heterogeneityof surface reflection properties (ice/snow and open water).

Role within (AC)³

  • Deliver measures of heterogeniety, surface albedo
  • Estimate of CRF over highly variable Arctic surface (contrast between ice/snow/open water/melt periods)
  • Sensitivity of the existing aerosol/cloud retrievals on surface heterogeniety
  • Recommondations on how to compare satellite, airborne and in-situ measurements made over challenging surfaces in the Arctic
matrix_C01

Members

Prof. Dr. Manfred Wendisch

Principal Investigator

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 32851

e-mail:

m.wendisch[at]uni-leipzig.de

Christine Pohl

PhD

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 32180

e-mail:

cpohl[at]iup.physik.uni-bremen.de

Dr. Evelyn Jäkel

Postdoc

University of Leipzig
Leipzig Institute for Meteorology (LIM)
Stephanstr. 3
04103 Leipzig

phone:

++49 (0) 341 97 36658

e-mail:

evi.jaekel[at]uni-leipzig.de

Dr. Georg Heygster

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28334 Bremen

phone:

++49 (0) 421 2186 2180

e-mail:

heygster[at]uni-bremen.de

Publications

2019

Pohl, C., V. Rozanov, M. Wendisch, G. Spreen, and G. Heygster, 2020: Impact of the near-field effects on radiative transfer simulations of the bidirectional reflectance factor and albedo of a densly packed snow layer, J. Quant. Spectrosc. Radiat. Transfer, 241, 106704, doi:10.1016/j.jqsrt.2019.106704

Seidel, J., 2019: Abhängigkeit der arktischen Oberflächenalbedo vom Meereisanteil, Bachelor Thesis, University of Leipzig

Jäkel, E.J. StapfM. WendischM. Nicolaus, W. Dorn, and A. Rinke, 2019: Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns, The Cryosphere13, 1695-1708, doi:10.5194/tc-13-1695-2019

Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, O., J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-96

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Pohl, C., L. Istomina, S. Tietsche, E. Jäkel, J. Stapf, G. Spreen, and G. Heygster, 2019: Broadband albedo of Arctic sea ice from MERIS optical data, The Cryosphere Discuss., doi:10.5194/tc-2019-62

Sun, B., E. Jäkel, M. Schäfer, and M. Wendisch, 2020: A Biased Sampling Approach to Accelerate Backward Monte Carlo Atmospheric Radiative Transfer Simulations and its Application to Arctic Heterogeneous Cloud and Surface Conditions, Journal of Quantitative Spectroscopy & Radiative Transfer, Volume 240, January 2020, 106690, https://doi.org/10.1016/j.jqsrt.2019.106690

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, G. Heygster, D. Kunkel, M. Maturilli, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Overview of the synoptic development during the ACLOUD/PASCAL field campaigns near Svalbard in spring 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

Pithan, F., G. Svensson, R. Caballero, D. Chechin, T.W. Cronin, A.M.L. Ekman, R. Neggers, M.D. Shupe, A. Solomon, M. Tjernström, and M. Wendisch, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes, Nature Geoscience, doi:10.1038/s41561-018-0234-1

Malinka, A., E. Zege, L. Istomina, G. HeygsterG. Spreen, D. Perovich, and C. Polashenski, 2018: Reflective properties of melt ponds on sea ice. The Cryosphere, doi:10.5194/tc-12-1921-2018

Project Poster