Effects of heterogeneous sea ice properties on radiative energy fluxes and the influence on Arctic amplification

Evelyn Jäkel, Marcel Nicolaus, Gunnar Spreen Hannah Niehaus, Tim Sperzel, Ran Tao, Manfred Wendisch

1. Summary

Research questions

Q1 What are the most relevant scales (time and space) that govern radiative fluxes for sea ice?

Q2 How well is the temporal evolution of sea-ice development and associated radiative energy fluxes represented in models?

Q3 How do regional and seasonal changes in sea-ice surface properties contribute to

Site 1

Site 2

Reflected

Transmitted

Absorbed

0.8

0.6

თ 0.4

0.8

0.2

Apr 15

Hypothesis

Changing sea ice properties and associated radiative fluxes enhance Arctic amplification.

3. Research plan phase III

Arctic amplification?

Contributions to CCA2 & SQ1

2. Achievements phase II

Melt season progress of Arctic sea ice

MOSAiC observations show how critical surface conditions and heterogeneity are to better understand the seasonal evolution of Arctic sea ice

- Surface energy budget is event-driven, strong contrasts - even on same ice floe (by factor 3)
- Summer surface albedo has two modes (ponds, ice)
- Bridging point measurements to floescales

Revised methods for retrievals of melt pond fraction and snow

grain size \rightarrow **B02**

New melt pond fraction (MPF) and open

<u>Melt</u>

Pond 2

Min. reflected

irradiance: 0.38

Jun 15

Snow even

Fransmittan

Melt onset

Max ransmittance

Mav 15

Fig. 1: Temporal evolution of solar partitioning.

formation of

scattering lay

Pond

Jul 01

surface

General goals

- Upscaling of local observations to airborne, satellite and model scales
 - merging analysis of field observations (e.g., MOSAiC) into numerical models
- Parametrization improvement:
 - o surface albedo (new functional cloud dependence, melt pond and surface type) fractions)
 - vertical radiative processes through the sea ice into the ocean
- Implementation in models (HIRHAM-NAOSIM, FESOM2-ICEPACK)
 - o analysis of the relative importance of improved characteristics and nearsurface processes in the Arctic (CCA2)

60

01 21 04

ĭ 30

<u>م</u> 20

- Identification of regional and seasonal differences in surface properties 8 50
 - o feedback of amplification to surface conditions
- Identification of long-term changes and impact on Arctic amplification
 - spatio-temporal melt pond fraction and surface albedo changes 2016 – today (extended back to 2002 by Envisat)

Fig. 4: Sentinel-2 melt pond fraction

- water fraction satellite product: (Sentinel-2, 10 m resolution) \rightarrow maximum uncertainty of 6 %
- Upscaling from local to Arctic-wide observations:
- (Sentinel-3, 300 m / 1 km resolution) → improved satellite retrieval for melt pond fraction and surface albedo
- New airborne snow grain size approach: reduced uncertainty (<25 %) vs. former methods (< 100 %)

Fig. 2: a) Sentinel-2 melt pond fraction. b) Sentinel-2 RGB composite. c) Downscaled helicopter melt pond fraction. d) Histograms of melt pond fraction distributions.

Evaluation of adjusted HIRHAM-NAOSIM surface albedo scheme

D03 + Seasonal and cloud dependent agreement subtype albedo: weakening for spring (below thin clouds) subtype fractions: too small variability in summer

roughness, ice type)

Work packages and Collaborations

- WP1: Synergistic analysis of field data over different spatial scales -> Q1
- WP2: Model representation -> Q1, Q2
- WP3: Long-term changes and Arctic amplification -> Q3

seasonal development (years 2017 – 2021).

 Implications for net irradiance (F_{net}): negative bias (median: -6.4 W m⁻²) for optical thin clouds

Fig. 3: (a) Scatterplot of F_{net} based on measured and parameterized surface albedo. (b) Frequency distribution of ΔF_{net} separated into three cloud classes depending on cloud optical depth (COD).

4. Legacy & Major expected results

Project Legacy

- Year-round observations of radiative fluxes for different sea ice and snow conditions
- Long-term albedo and melt pond fraction satellite records
- Set of new parametrizations for implementation into climate models

COORDINATING UNIVERSITY

Universität Bremen

Leibniz-Institut für Troposphärenforschung

Model setup

Major expected results within phase III

- Parameterizing in-situ observation of sea ice albedo and transmittance
- Improving representation of modeled radiative transfer between sea-ice and ocean
- Determine the uncertainties and sensitivities of model simulation to radiative fluxes and sea ice properties
- Arctic-wide estimates of energy fluxes over the last decades
- Conclusions on trends in surface albedo and melt pond fraction and their relationship to Arctic amplification