Other Publications

Data publications by (AC)³ scientists published within the framework of (AC)³ can be found here.


Pablo Saavedra Garfias, Heike Kalesse-Los, Kerstin Ebell, 2024; Estimation of wintertime cloud radiative effects in the Western Arctic, a function of cloud-moisture-coupling and sea ice conditions. AIP Conf. Proc.; 2988 (1): 070008. https://doi.org/10.1063/5.0182751

Saavedra Garfias, P., H. Kalesse-Los, 2024. Long-term statistical analysis of wintertime cloud thermodynamic phase and micro-physical properties in relation to sea ice condition at NSA Utqiaǵvik site. ESS Open Archive. DOI: 10.22541/essoar.170516166.65463592/v1

Saavedra Garfias, P., H. Kalesse-Los, J. Beikert, T. Seelig, 2024. The role of water vapor transport and sea ice leads on Arctic mixed-phase clouds during MOSAiC. ESS Open Archive. DOI: 10.22541/essoar.170431102.26299753/v1


Saavedra Garfias, P., H. Kalesse-Los, 2023. Wintertime Arctic cloud properties coupled to sea ice leads during MOSAiC expedition. Harvard Dataverse, V1, DOI: 10.7910/DVN/DZSUV7.

Saavedra Garfias, P., H. Kalesse-Los, 2023, J. Beikert. Do sea ice conditions have a measurable influence on snowfall? A study based on MOSAiC wintertime observations. ESS Open Archive. DOI: 10.22541/essoar.169774532.27101629/v1

Saavedra Garfias, P., H. Kalesse-Los, 2023. Variation of cloud properties ascribed by sea ice states in the central and western Arctic. ESS Open Archive. DOI: 10.22541/essoar.169008271.12504472/v1

Saavedra Garfias, P., H. Kalesse-Los, K. Ebell, 2023. Climatology of mixed-phase clouds and their radiative effects when coupled to sea ice; study based from observations at the western Arctic . ESS Open Archive. DOI: 10.22541/essoar.167457993.38674219/v1

Saavedra Garfias, P., H. Kalesse-Los, L. Von Albedyll, H. Griesche, G. Spreen, 2023. Cloud Macro-and Microphysical Properties as Coupled to Sea Ice Leads During the MOSAiC Expedition. ESS Open Archive. DOI: 10.22541/essoar.167397335.54837214/v1

Maherndl, N., Maahn, M., Tridon, F., and Dupuy, R., 2022: Retrieving riming in arctic mixed phase clouds from collocated remote sensing and in situ aircraft measurements during ACLOUD , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13359, https://doi.org/10.5194/egusphere-egu22-13359.

Maherndl, N.; Maahn, M.; Tridon, F.; Leinonen, J.; Ori, D. & Kneifel, S., 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation”, Zenodo, https://doi.org/10.5281/zenodo.7757034

Buschmann, M., 2023: Data submissions of the TR172 – (AC)³ project from 2016-01-01 to 2023-04-06, Zenodo, https://doi.org/10.5281/zenodo.7805507

Maherndl, N.; Maahn, M.; Moser, M.; Lucke, J.; Mech, M. & Risse, N., 2023: Airborne observations of riming in arctic mixed-phase clouds during HALO-(AC)3, EGU General Assembly 2023, 24–28 Apr 2023, EGU23-5000, https://doi.org/10.5194/egusphere-egu23-5000

Maahn, M., 2023: Video In Situ Snowfall Sensor (VISSS) data processing library V2023.1.6, Zenodo, https://doi.org/10.5281/zenodo.7650394

Maahn, M., 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1, Zenodo, https://doi.org/10.5281/zenodo.7640801

Maahn, M.; Haseneder-Lind, R. & Krobot, P., 2023: Hardware Design of the Video In Situ Snowfall Sensor v2 (VISSS2), Zenodo, https://doi.org/10.5281/zenodo.7640821

Saavedra Garfias, P.; Kalesse-Los, H.; Albedyll, L. V.; Griesche, H. & Spreen, G., 2023: Cloud Macro-and Microphysical Properties as Coupled to Sea Ice Leads During the MOSAiC Expedition, ESS Open Archive, Authorea,Inc., https://doi.org/10.22541/essoar.167397335.54837214/v1

Kanzow, T., The Expedition PS131 of the Research Vessel Polarstern to the Fram Strait in 2022, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 2023, https://doi.org/10.57738/BzPM_0770_2023


Saavedra Garfias, P., H. Kalesse-Los, 2021, W. Schimmel. Climatology of clouds containing supercooled liquid in the Western and Central Arctic. ESS Open Archive. DOI: 10.1002/essoar.10509918.1

Saavedra Garfias, P., H. Kalesse-Los, 2021. Classification of cloud microphysical properties as a function of sea ice concentration conditions during MOSAiC. ESS Open Archive. DOI: 10.1002/essoar.10509919.1

Ivy Tan, Georgia Sotiropoulou, Patrick Taylor, Lauren Zamora, Manfred Wendisch, 2021: A review of the factors influencing Arctic liquid-containing clouds: progress and outlook, Accepted by AGU Books. To appear in “Cloud Physics and Dynamics: Showers and Shade from Earth’s Atmosphere”-

Nixdorf, Uwe, Dethloff, Klaus, Rex, Markus, Shupe, Matthew, Sommerfeld, Anja, Perovich, Donald K., Nicolaus, Marcel, Heuzé, Céline, Rabe, Benjamin, Loose, Brice, Damm, Ellen, Gradinger, Rolf, Fong, Allison, Maslowski, Wieslaw, Rinke, Annette, Kwok, Ronald, Spreen, Gunnar, Wendisch, Manfred, Herber, Andreas, Boetius, Antje. (2021). MOSAiC Extended Acknowledgement. Zenodo. https://doi.org/10.5281/zenodo.5541624

Herber, A., Becker, S., Belter, H. J., Brauchle, J., Ehrlich, A., Klingebiel, M., Krumpen, T., Lüpkes, C., Mech, M., Moser, M., & Wendisch, M., 2021. MOSAiC Expedition: Airborne Surveys with Research Aircraft POLAR 5 and POLAR 6 in 2020 . In Berichte zur Polar- und Meeresforschung = Reports on Polar and Marine Research (Vol. 754, pp. 1–99). Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung. https://doi.org/10.48433/BzPM_0754_2021


Buschmann, M., 2020: Data Policy for the Transregional Collaborative Research Centre TR 172 ac, Zenodo, https://doi.org/10.5281/zenodo.7570329

Ehrlich A., Schäfer M., Ruiz-Donoso E., Wendisch M., 2020: Airborne Remote Sensing of Arctic Clouds. In: Kokhanovsky A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham, https://doi.org/10.1007/978-3-030-38696-2_2

A. Kokhanovsky, C. Tomasi (eds.) including D. Chechin, A. Ehrlich, A. Herber, C. Lüpkes, Ch. Ritter, M. Wendisch, 2020, Physics and Chemistry of the Arctic Atmosphere, Springer Polar Sciences, https://doi.org/10.1007/978-3-030-33566-3


A. Macke, C. Barrientos, T. Conrath, U. Egerer, R. Engelmann, S. Fuchs, X. Gong, H. Griesche, M. Hartmann, S. Kecorius, M. van Pinxteren, M. Radenz, K. Szodry, T. Vogl, A. Welti, J. Witthun, S. Zeppenfeld, 2018: Clouds, aerosols and radiation measurements during the Polarstern expedition PS106 (PASCAL) in June – July 2017, 2018, TROPOS Biannual Report 2016/2017.

Lüpkes, C., A. Schmitt and V. Gryanik, 2018: Turbulente  Energie- und Impulsflüsse in der atmosphärischen Grenzschicht über dem polaren Ozean, promet, 102, 61-74

Wendisch, M. and A. Ehrlich, 2018: Arktische Verstärkung und Wolken, promet, 102, 21-32

Dethloff, K., A. Rinke, D. Handorf, R. Jaiser, W. Dorn, A. Sommerfeld, 2018: Regionale und globale Wechselwirkung zwischen arktischem Meereis und der atmosphärischen Zirkulation, promet, 102, 14-20

Triana Gómez, A., G. Heygster, C. Melsheimer, and G. Spreen, 2018: Towards a Merged Total Water Vapour Retrieval from AMSU-B and AMSR-E Data in the Arctic Region, Proceedings of the “IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium,” IEEE, Valencia, 1818–1821, doi:10.1109/igarss.2018.8517863


Heymach, K., A. Rinke, and M. Wendisch, 2017: Klima-Aufzeichnungen – Climate Recording, Edition Lammerhuber, ISBN: 978-3903101425


Blechschmidt, A.-M., Richter, A.,Burrows, J. P., Kaleschke, L., Strong, K., Theys, N., Weber, M., Zhao, X., and Zien, A., 2016: An exemplary case of a bromine explosion event linked to cyclone development in the Arctic, Atmos. Chem. Phys.,16, 1773-1788, doi:10.5194/acp-16-1773-2016