Publications Overview

  • Peer-reviewed, discussion and submitted articles as well as data publications published within the framework of (AC)³ are listed below.
  • Theses by (AC)³ scientists published within the framework of (AC)³ are listed in “Theses” below.

DFG has prepared the following Guidelines for Safeguarding Good Research Practice. They represent the consensus among the member organisations of the DFG on the fundamental principles and standards of good practice and are upheld by these organisations.

You may found the Guidelines for Safeguarding Good Research Practice here.

2024

Griesche, H.J., Seifert, P., Engelmann, R., M. Radenz, J. Hofer, D. Althausen, A. Walbröl, C. Barrientos-Velasco, H. Baars, S. Dahlke, S. Tukiainen & A. Macke, 2024, Cloud micro- and macrophysical properties from ground-based remote sensing during the MOSAiC drift experiment. Sci Data 11, 505. https://doi.org/10.1038/s41597-024-03325-w

Niehaus, H., Istomina, L., Nicolaus, M., Tao, R., Malinka, A., Zege, E., and Spreen, G., 2024: Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model, The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024.

Rabe, B, Cox, CJ, Fang, Y-C, Goessling, H, Granskog, MA, Hoppmann, M, Hutchings, JK, Krumpen, T, Kuznetsov, I, Lei, R, Li, T, Maslowski, W, Nicolaus, M, Perovich, D, Persson, O, Regnery, J, Rigor, I, Shupe, MD, Sokolov, V, Spreen, G, Stanton, T, Watkins, DM, Blockley, E, Jakob Buenger, H, Cole, S, Fong, A, Haapala, J, Heuzé, C, Hoppe, CJM, Janout, M, Jutila, A, Katlein, C, Krishfield, R, Lin, L, Ludwig, V, Morgenstern, A, O’Brien, J, Zurita, AQ, Rackow, T, Riemann-Campe, K, Rohde, J, Shaw, W, Smolyanitsky, V, Solomon, A, Sperling, A, Tao, R, Toole, J, Tsamados, M, Zhu, J, Zuo, G, 2024. The MOSAiC Distributed Network: Observing the coupled Arctic system with multidisciplinary, coordinated platforms. Elem. Sci. Anth. 12(1). DOI: https://doi.org/10.1525/elementa.2023.00103

Swain, B., Vountas, M., Singh, A., Anchan, N. L., Deroubaix, A., Lelli, L., Ziegler, Y., Gunthe, S. S., Bösch, H., and Burrows, J. P., 2024: Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer, Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024.

Fadnavis, S., Sonbawne, S.M., Laakso, A.,  F. Ploeger, A. Rap, B. Heinold, T. P. Sabin & R. Müller, 2024. Long range transport of South and East Asian anthropogenic aerosols counteracting Arctic warming. npj Clim Atmos Sci 7, 101. https://doi.org/10.1038/s41612-024-00633-1

Bracamontes-Ramírez, J., Walter, M., &; Losch, M., 2024. Near-inertial wave propagation in the deep Canadian Basin: Turning depths and the homogeneous deep layer. J. Geophys. Res. Oceans, 129, e2023JC020228. https://doi.org/10.1029/2023JC020228

Hofmann, Z., von Appen, W.-J., Kanzow, T., Becker, H., Hagemann, J., Hufnagel, L., & Iversen, M. H., 2024. Stepwise subduction observed at a front in the marginal ice zone in Fram Strait. J. Geophys. Res. Oceans, 129, e2023JC020641. https://doi.org/10.1029/2023JC020641

Weiß, J.F., von Appen, WJ., Niehoff, B., Nicole Hildebrand, M. Graeve, S. Neuhaus, A. Bracher, E.-M. Nöthig & K. Metfies, 2024: Unprecedented insights into extents of biological responses to physical forcing in an Arctic sub-mesoscale filament by combining high-resolution measurement approaches. Sci Rep 14, 8192. https://doi.org/10.1038/s41598-024-58511-y

Chellini, G., & Kneifel, S., 2024. Turbulence as a key driver of ice aggregation and riming in Arctic low-level mixed-phase clouds, revealed by long-term cloud radar observations. Geophys. Res. Lett., 51, e2023GL106599. https://doi.org/10.1029/2023GL106599.

Müller, H., Ehrlich, A., Jäkel, E., Röttenbacher, J., Kirbus, B., Schäfer, M., Hogan, R. J., and Wendisch, M., 2024: Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds, Atmos. Chem. Phys., 24, 4157–4175, https://doi.org/10.5194/acp-24-4157-2024.

Lacher, L., Adams, M. P., Barry, K., Bertozzi, B., Bingemer, H., Boffo, C., Bras, Y., Büttner, N., Castarede, D., Cziczo, D. J., DeMott, P. J., Fösig, R., Goodell, M., Höhler, K., Hill, T. C. J., Jentzsch, C., Ladino, L. A., Levin, E. J. T., Mertes, S., Möhler, O., Moore, K. A., Murray, B. J., Nadolny, J., Pfeuffer, T., Picard, D., Ramírez-Romero, C., Ribeiro, M., Richter, S., Schrod, J., Sellegri, K., Stratmann, F., Swanson, B. E., Thomson, E. S., Wex, H., Wolf, M. J., and Freney, E., 2024: The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air, Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024.

Mchedlishvili, A., 2024: Understanding Polar Atmosphere-Ocean-Sea Ice Momentum Transfer Using Remote Sensing and Modeling Techniques, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/8054

Lonardi, M., 2024: Tethered Balloon Observations of Thermal-Infrared Radiation Profiles in the Cloudy and Cloudless Arctic Atmospheric Boundary Layer, Dissertation, Universität Leipzig

Niehaus, H., 2024: Melt Ponds on Arctic Summer Sea Ice from Optical Satellite Data, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/8044

Tao, R., 2024: Spatial heterogeneity and seasonal evolution of surface properties and radiative fluxes of Arctic sea ice, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/8047

Heukamp, F., 2024: Interannual Variability of the Ocean Circulation in the Atlantic-Arctic Ocean Gateways, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/7999

L. Thielke, G. Spreen, M. Huntemann, D. Murashkin, 2024; Spatio-temporal variability of small-scale leads based on helicopter maps of winter sea ice surface temperatures. Elem. Sci. Anth,  12 (1): 00023. https://doi.org/10.1525/elementa.2023.00023

Tao, R.; Nicolaus, M.; Katlein, C.; Anhaus, P.; Hoppmann, M.; Spreen, G.; Niehaus, H.; Jäkel, E.; Wendisch, M. & Haas, C., 2024: Seasonality of spectral radiative fluxes and optical properties of Arctic sea ice, Elem. Sci. Anth., 12(1), 00130. https://doi.org/10.1525/elementa.2023.00130

Griesche, H. J., Barrientos-Velasco, C., Deneke, H., Hünerbein, A., Seifert, P., and Macke, A., 2024: Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget, Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024.

Lauer, M., 2024: Influence of synoptic features on precipitation in the Arctic – Lessons learned from case studies and climatology, Dissertation, Universität zu Köln

Linke, O., 2024: Constraining and predicting Arctic amplification and relevant climate feedbacks, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-915455

Aue, L., 2024: Cyclone impacts on sea ice in the Atlantic Arctic Ocean, Dissertation, Universität Potsdam, https://publishup.uni-potsdam.de/frontdoor/index/index/docId/63445

Rückert, J., 2024: Unraveling Atmosphere and Sea Ice in the Arctic – Advancements in a Multi-Parameter Retrieval using Satellite Microwave Radiometer Data, Dissertation, Universität Bremen, https://media.suub.uni-bremen.de/handle/elib/7903

Kiszler, T., 2024: Improving our understanding of cloud phase-partitioning using long-term cloud-resolving simulations of Svalbard, Dissertation, Universität zu Köln, https://kups.ub.uni-koeln.de/72722/

Jäkel, E., Becker, S., Sperzel, T. R., Niehaus, H., Spreen, G., Tao, R., Nicolaus, M., Dorn, W., Rinke, A., Brauchle, J., and Wendisch, M., 2024: Observations and modeling of areal surface albedo and surface types in the Arctic, The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024.

Swain, B., Vountas, M., Deroubaix, A., Lelli, L., Ziegler, Y., Jafariserajehlou, S., Gunthe, S. S., Herber, A., Ritter, C., Bösch, H., and Burrows, J. P., 2024: Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations, Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024.

Maahn, M., Moisseev, D., Steinke, I., Maherndl, N., and Shupe, M. D., 2024: Introducing the Video In Situ Snowfall Sensor (VISSS), Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024.

Notholt, J., Schmithüsen, H., Buschmann, M., & Kleidon, A. (2024). Infrared radiative effects of increasing CO 2 and CH 4 on the atmosphere in Antarctica compared to the Arctic. Geophys. Res. Lett., 51, e2023GL105600. https://doi.org/10.1029/2023GL105600

Pablo Saavedra Garfias, Heike Kalesse-Los, Kerstin Ebell, 2024; Estimation of wintertime cloud radiative effects in the Western Arctic, a function of cloud-moisture-coupling and sea ice conditions. AIP Conf. Proc.; 2988 (1): 070008. https://doi.org/10.1063/5.0182751

Saavedra Garfias, P., H. Kalesse-Los, 2024. Long-term statistical analysis of wintertime cloud thermodynamic phase and micro-physical properties in relation to sea ice condition at NSA Utqiaǵvik site. ESS Open Archive. DOI: 10.22541/essoar.170516166.65463592/v1

Saavedra Garfias, P., H. Kalesse-Los, J. Beikert, T. Seelig, 2024. The role of water vapor transport and sea ice leads on Arctic mixed-phase clouds during MOSAiC. ESS Open Archive. DOI: 10.22541/essoar.170431102.26299753/v1

Chellini, G., 2024: Precipitation formation in low-level mixed-phase clouds: determining relevant processes and drivers based on cloud radar observations from a high Arctic site, Dissertation, Universität zu Köln, https://kups.ub.uni-koeln.de/72320/

2023

Galytska, E., Weigel, K., Handorf, D., Jaiser, R., Köhler, R., Runge, J., &; Eyring, V., 2023. Evaluating causal Arctic-midlatitude teleconnections in CMIP6. J. Geophys. Rese. Atmos., 128, e2022JD037978. https://doi.org/10.1029/2022JD037978

Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, Atsushi Yoshida, 2023, A signature of aged biogenic compounds detected from airborne VOC measurements in the high arctic atmosphere in March/April 2018, Atmos. Environ., Volume 309, 119919, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2023.119919.

Tan, I., Sotiropoulou, G., Taylor, P.C., Zamora, L. and Wendisch, M. (2023). A Review of the Factors Influencing Arctic Mixed-Phase Clouds: Progress and Outlook. In Clouds and their Climatic Impacts, S.C. Sullivan (Ed.). https://doi.org/10.1002/9781119700357.ch5

Ahmed, Shaddy, Thomas, Jennie L., Angot, Hélène, Dommergue, Aurélien, Archer, Stephen D., Bariteau, Ludovic, Beck, Ivo, Benavent, Nuria, Blechschmidt, Anne-Marlene, Blomquist, Byron, Boyer, Matthew, Christensen, Jesper H., Dahlke, Sandro, Dastoor, Ashu, Helmig, Detlev, Howard, Dean, Jacobi, Hans-Werner, Jokinen, Tuija, Lapere, Rémy, Laurila, Tiia, Quéléver, Lauriane L. J., Richter, Andreas, Ryjkov, Andrei, Mahajan, Anoop S., Marelle, Louis, Pfaffhuber, Katrine Aspmo, Posman, Kevin, Rinke, Annette, Saiz-Lopez, Alfonso, Schmale, Julia, Skov, Henrik , Steffen, Alexandra, Stupple, Geoff, Stutz, Jochen, Travnikov, Oleg, Zilker, Bianca, 2023; Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring. Elem. Sci. Anth.; 11 (1): 00129. doi: https://doi.org/10.1525/elementa.2022.00129

Evgenii Salganik, Christian Katlein, Benjamin A. Lange, Ilkka Matero, Ruibo Lei, Allison A. Fong, Steven W. Fons, Dmitry Divine, Marc Oggier, Giulia Castellani, Deborah Bozzato, Emelia J. Chamberlain, Clara J. M. Hoppe, Oliver Müller, Jessie Gardner, Annette Rinke, Patric Simões Pereira, Adam Ulfsbo, Chris Marsay, Melinda A. Webster, Sönke Maus, Knut V. Høyland, Mats A. Granskog, 2023; Temporal evolution of under-ice meltwater layers and false bottoms and their impact on summer Arctic sea ice mass balance. Elementa: Science of the Anthropocene; 11 (1): 00035. doi: https://doi.org/10.1525/elementa.2022.00035

Lonardi, M., Akansu, E. F., Ehrlich, A., Mazzola, M., Pilz, C., Shupe, M. D., Siebert, H., and Wendisch, M., 2023: Tethered balloon-borne observations of thermal-infrared irradiance and cooling rate profiles in the Arctic atmospheric boundary layer, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1396, accepted.

B. Kirbus, J. Chylik, A. Ehrlich, S. Becker, M. Schäfer, R. Neggers, M. Wendisch, 2023; Analysis of an Arctic cold air outbreak during autumn and related air mass transformations forced by surface changes and advection in higher altitudes. Elem. Sci. Anth.; 11 (1): 00079, https://doi.org/10.1525/elementa.2023.00079

Chen, Y., Liu, S., Zhu, L., Seo, S., Richter, A., Li, X., et al., 2023. Global observations of tropospheric bromine monoxide (BrO) columns from TROPOMI. J. Geophys. Res. Atmos., 128, e2023JD039091. https://doi.org/10.1029/2023JD039091

Rückert, J. E., Huntemann, M., Tonboe, R. T. & Spreen, G., 2023: Modeling snow and ice microwave emissions in the Arctic for a multi-parameter retrieval of surface and atmospheric variables from microwave radiometer satellite data. Earth Space Sci., 10, e2023EA003177. https://doi.org/10.1029/2023EA003177

Linke, O., Feldl, N. and Quaas, J., 2023: Current-climate sea ice amount and seasonality as constraints for future Arctic amplification. Environ. Res. Clim., 2(4), p.045003., DOI 10.1088/2752-5295/acf4b7

Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Zeising, M., Bracher, A., and Herrmann, H., 2023: Marine carbohydrates in Arctic aerosol particles and fog – diversity of oceanic sources and atmospheric transformations, Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023.

Heuzé, C., Huhn, O., Walter, M., Sukhikh, N., Karam, S., Körtke, W., Vredenborg, M., Bulsiewicz, K., Sültenfuß, J., Fang, Y.-C., Mertens, C., Rabe, B., Tippenhauer, S., Allerholt, J., He, H., Kuhlmey, D., Kuznetsov, I., and Mallet, M., 2023: A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020), Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023.

Saavedra Garfias, P., H. Kalesse-Los, 2023. Wintertime Arctic cloud properties coupled to sea ice leads during MOSAiC expedition. Harvard Dataverse, V1, DOI: 10.7910/DVN/DZSUV7.

Saavedra Garfias, P., H. Kalesse-Los, 2023, J. Beikert. Do sea ice conditions have a measurable influence on snowfall? A study based on MOSAiC wintertime observations. ESS Open Archive. DOI: 10.22541/essoar.169774532.27101629/v1

Saavedra Garfias, P., H. Kalesse-Los, 2023. Variation of cloud properties ascribed by sea ice states in the central and western Arctic. ESS Open Archive. DOI: 10.22541/essoar.169008271.12504472/v1

Saavedra Garfias, P., H. Kalesse-Los, K. Ebell, 2023. Climatology of mixed-phase clouds and their radiative effects when coupled to sea ice; study based from observations at the western Arctic . ESS Open Archive. DOI: 10.22541/essoar.167457993.38674219/v1

Saavedra Garfias, P., H. Kalesse-Los, L. Von Albedyll, H. Griesche, G. Spreen, 2023. Cloud Macro-and Microphysical Properties as Coupled to Sea Ice Leads During the MOSAiC Expedition. ESS Open Archive. DOI: 10.22541/essoar.167397335.54837214/v1

Kecorius, S.; Hoffmann, E. H.; Tilgner, A.; Barrientos-Velasco, C.; van Pinxteren, M.; Zeppenfeld, S.; Vogl, T.; Madueño, L.; Lovrić, M.; Wiedensohler, A.; Kulmala, M.; Paasonen, P. & Herrmann, H., 2023: Rapid growth of Aitken-mode particles during Arctic summer by fog chemical processing and its implication, PNAS Nexus, 10.1093/pnasnexus/pgad124

van Pinxteren, M., Zeppenfeld, S., Fomba, K. W., Triesch, N., Frka, S., and Herrmann, H., 2023: Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation, Atmos. Chem. Phys., 23, 6571–6590, https://doi.org/10.5194/acp-23-6571-2023.

Wendisch, M., Stapf, J., Becker, S., Ehrlich, A., Jäkel, E., Klingebiel, M., Lüpkes, C., Schäfer, M., and Shupe, M. D., 2023: Effects of variable ice–ocean surface properties and air mass transformation on the Arctic radiative energy budget, Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023.

Gürses, Ö., Oziel, L., Karakuş, O., Sidorenko, D., Völker, C., Ye, Y., Zeising, M., Butzin, M., and Hauck, J., 2023: Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3, Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023.

Schmitt, A. U. and Lüpkes, C., 2023: Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions, The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023

Mei, L., Rozanov, V., Rozanov, A., and Burrows, J. P.: SCIATRAN software package (V4.6), 2023: update and further development of aerosol, clouds, surface reflectance databases and models, Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023.

Chechin, D. G., Lüpkes, C., Hartmann, J., Ehrlich, A., and Wendisch, M., 2023: Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud-top radiative cooling: ACLOUD airborne observations, Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023.

Maherndl, N., Moser, M., Lucke, J., Mech, M., Risse, N., Schirmacher, I., and Maahn, M., 2023: Quantifying riming from airborne data during HALO-(AC)3, EGUsphere, https://doi.org/10.5194/egusphere-2023-1118, [preprint].

Riebold, J., Richling, A., Ulbrich, U., Rust, H., Semmler, T., and Handorf, D., 2023: On the linkage between future Arctic sea ice retreat, Euro-Atlantic circulation regimes and temperature extremes over Europe, Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023.

Heukamp, F.O., L. Aue, Q. Wang, M. Ionita, T. Kanzow, C. Wekerle, A. Rinke, 2023: Cyclones Modulate the Control of the North Atlantic Oscillation on Transports into the Barents Sea, Commun Earth Environ 4, 324 (2023). https://doi.org/10.1038/s43247-023-00985-1

Aue, L., & Rinke, A., 2023. Cyclone impacts on sea ice concentration in the Atlantic Arctic ocean: Annual cycle and recent changes. Geophys. Res. Lett., 50, e2023GL104657. https://doi.org/10.1029/2023GL104657

Chellini, G. and Gierens, R. and Ebell, K. and Kiszler, T. and Krobot, P. and Myagkov, A. and Schemann, V. and Kneifel, S., 2023, Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations, Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023

Sperzel, T.R., Jäkel, E., Pätzold, F. et al. Surface albedo measurements and surface type classification from helicopter-based observations during MOSAiC. Sci Data 10, 584 (2023). https://doi.org/10.1038/s41597-023-02492-6

Pasquier, J. T., J. Henneberger, A. Korolev, F. Ramelli, J. Wieder, A. Lauber, G. Li, R. O. David, T. Carlsen, R. Gierens, M. Maturilli, and U. Lohmann, 2023: Understanding the history of complex ice crystal habits deduced from a holographic imager, Geophys. Res. Lett., 50, e2022GL100247. https://doi.org/10.1029/2022GL100247

Zeising M., Oziel L., Gürses Ö., Hauck J., Heinold B., Losa S., Thoms S., van Pinxteren M., Völker C., Zeppenfeld S., Bracher A. (submitted 3 May 2023) Wide-spread Occurrence and Increasing Trend of Biogenic Aerosol Precursors in the Arctic Ocean Simulated by an Ocean Biogeochemical Model. Journal of Geophysical Research – Biogeosciences 10.22541/essoar.168332181.16821948/v1

Rosenburg, S., Lange, C., Jäkel, E., Schäfer, M., Ehrlich, A., and Wendisch, M., 2023: Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations, Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023.

Ehrlich, A., Zöger, M., Giez, A., Nenakhov, V., Mallaun, C., Maser, R., Röschenthaler, T., Luebke, A. E., Wolf, K., Stevens, B., and Wendisch, M., 2023: A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets, Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023.

Maherndl, N., Maahn, M., Tridon, F., and Dupuy, R., 2022: Retrieving riming in arctic mixed phase clouds from collocated remote sensing and in situ aircraft measurements during ACLOUD , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13359, https://doi.org/10.5194/egusphere-egu22-13359.

Maherndl, N.; Maahn, M.; Tridon, F.; Leinonen, J.; Ori, D. & Kneifel, S., 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation”, Zenodo, https://doi.org/10.5281/zenodo.7757034

Karami, K., S. Borchert, R. Eichinger, Ch. Jacobi, A. Kuchar, S. Mehrdad, P. Pisoft, and P. Sacha, 2023: The climatology of elevated stratopause events in the UA-ICON model and the contribution of gravity waves, J. Geophys. Res.: Atmos., 128, e2022JD037907. https://doi.org/10.1029/2022JD037907.

Sze, K. C. H.; Wex, H.; Hartmann, M.; Skov, H.; Massling, A.; Villanueva, D. & Stratmann, F., 2023: Ice Nucleating Particles in Northern Greenland: annual cycles, biological contribution and parameterizations, Atmos. Chem. Phys., 4741-4761, https://doi.org/10.5194/acp-23-4741-2023

Röntgen, L., 2023: Performance of a coupled Arctic climate model compared to MOSAiC observations and its sensitivity to a change in snow thermal conductivity, Techn. Univ. Berlin, Techn. Univ. Berlin, 37pp, https://doi.org/10.5281/zenodo.7693669

McPherson, R. A.; Wekerle, C. & Kanzow, T., 2023: Shifts of the Recirculation Pathways in central Fram Strait drive Atlantic Intermediate Water Variability on Northeast Greenland shelf, J. Geophys. Res.: Oceans,128, e2023JC019915 https://doi.org/10.1029/2023JC019915

Metzner, E. P., and Salzmann M., 2023, Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability, Ocean Sci., 5, 1453-1464, https://doi.org/10.5194/os-19-1453-2023.

Saavedra Garfias, P., Kalesse-Los, H., von Albedyll, L., Griesche, H., and Spreen, G., 2023: Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic, Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023.

Buschmann, M., 2023: Data submissions of the TR172 – (AC)³ project from 2016-01-01 to 2023-04-06, Zenodo, https://doi.org/10.5281/zenodo.7805507

Pilz, C.; Lonardi, M.; Egerer, U.; Siebert, H.; Ehrlich, A.; Heymsfield, A.; Schmitt, C.; Shupe, M. D.; Wehner, B. & Wendisch, M., 2023: Profile observations of the Arctic atmospheric boundary layer with the BELUGA tethered balloon during MOSAiC. Sci Data 10, 534 (2023). https://doi.org/10.1038/s41597-023-02423-5

Akansu, E. F., Dahlke, S., Siebert, H., and Wendisch, M., 2023: Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions, Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023.

Egerer, U., Siebert, H., Hellmuth, O., and Sørensen, L. L., 2023: The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic, Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023.

Karami, K.; Garcia, R.; Jacobi, C.; Richter, J. H. & Tilmes, S., 2023: The Holton–Tan mechanism under stratospheric aerosol intervention, Atmos. Chem. Phys., 23, 3799-3818, https://doi.org/10.5194/acp-23-3799-2023

Gabarró, C.; Hughes, N.; Wilkinson, J.; Bertino, L.; Bracher, A.; Diehl, T.; Dierking, W.; Gonzalez-Gambau, V.; Lavergne, T.; Madurell, T.; Malnes, E. & Wagner, P. M., 2023: Improving satellite-based monitoring of the polar regions: Identification of research and capacity gaps, Front. Rem. Sens., 4, https://doi.org/10.3389/frsen.2023.952091

al Hajjar, K. & Salzmann, M., 2023: Contributions of local heat storage and ocean heat transport to cold season Arctic Ocean surface energy fluxes in CMIP6 models, Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4496

Walbröl, A., Michaelis, J., Becker, S., Dorff, H., Gorodetskaya, I., Kirbus, B., Lauer, M., Maherndl, N., Maturilli, M., Mayer, J., Müller, H., Neggers, R. A. J., Paulus, F. M., Röttenbacher, J., Rückert, J. E., Schirmacher, I., Slättberg, N., Ehrlich, A., Wendisch, M., and Crewell, S., 2023: Environmental conditions in the North Atlantic sector of the Arctic during the HALO–(AC)³ campaign, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-668.

Kalesse-Los, H.; Kötsche, A.; Foth, A.; Röttenbacher, J.; Vogl, T. & Witthuhn, J., 2023: The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations, Atmos. Meas. Tech., Copernicus GmbH, 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023

Slättberg, N. K.; Dahlke, S. & Maturilli, M., 2023: Fram Strait Marine Cold Air Outbreaks in CARRA and ERA5: Effects on Surface Turbulent Heat Fluxes and the Vertical Structure of the Troposphere, ESS Open Archive, https://doi.org/10.22541/essoar.167898508.82732727/v1

Moser, M.; Voigt, C.; Jurkat-Witschas, T.; Hahn, V.; Mioche, G.; Jourdan, O.; Dupuy, R.; Gourbeyre, C.; Schwarzenboeck, A.; Lucke, J.; Boose, Y.; Mech, M.; Borrmann, S.; Ehrlich, A.; Herber, A.; Lüpkes, C. & Wendisch, M., 2023: Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer, Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023

Foth, L.; Dorn, W.; Rinke, A.; Jäkel, E. & Niehaus, H., 2023: On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice, EGUsphere, https://doi.org/10.5194/egusphere-2023-634, [preprint]

Aue, L.; Röntgen, L.; Dorn, W.; Uotila, P.; Vihma, T.; Spreen, G. & Rinke, A., 2023: Impact of three intense winter cyclones on the sea ice cover in the Barents Sea: A case study with a coupled regional climate model, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1112467

Lauer, M., Rinke, A., Gorodetskaya, I., Sprenger, M., Mech, M., and Crewell, S., 2023: Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic, Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023.

Schnitt, S.; Mech, M.; Rose, T. & Crewell, S., 2023: Ground- and ship-based microwave radiometer measurements during the EUREC4A campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-2023-140, [preprint], accepted

Kiszler, T.; Ebell, K. & Schemann, V., 2023: A Performance Baseline for the Representation of Clouds and Humidity in Cloud-Resolving ICON-LEM Simulations in the Arctic, J. Adv. Model. Earth Syst., e2022MS003299, https://doi.org/10.1029/2022MS003299

Schneising, O.; Buchwitz, M.; Hachmeister, J.; Vanselow, S.; Reuter, M.; Buschmann, M.; Bovensmann, H. & Burrows, J. P., 2023: Advances in retrieving XCH_4 and XCO from Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm, Atmos. Meas. Tech., 16, 669-694, https://doi.org/10.5194/amt-16-669-2023

Jaiser, R.; Akperov, M.; Timazhev, A.; Romanowsky, E.; Handorf, D. & Mokhov, I., 2023: Linkages between Arctic and Mid-Latitude Weather and Climate: Unraveling the Impact of Changing Sea Ice and Sea Surface Temperatures during Winter, Meteorol. Z., Schweizerbart Science Publishers, http://doi.org/10.1127/metz/2023/1154

Ruiz-Castillo, E.; Janout, M.; Hölemann, J.; Kanzow, T.; Schulz, K. & Ivanov, V., 2023: Structure and seasonal variability of the Arctic Boundary Current north of Severnaya Zemlya, J. Geophys. Res.: Oceans, 118, e2022JC018677, https://doi.org/10.1029/2022JC018677

Heukamp, F. O.; Kanzow, T.; Wang, Q.; Wekerle, C.  & Gerdes, R., 2023: Impact of Cyclonic Wind Anomalies Caused by Massive Winter Sea Ice Retreat in the Barents Sea on Atlantic Water Transport towards the Arctic: A Model Study. J. Geophys. Res.: Oceans, 128, e2022JC019045, https://doi.org/10.1029/2022JC019045

Doglioni, F.; Ricker, R.; Rabe, B.; Barth, A.; Troupin, C. & Kanzow, T., 2023: Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020), Earth Syst. Sci. Data, 15, 225-263, https://doi.org/10.5194/essd-15-225-2023

Zilker, B.; Richter, A.; Blechschmidt, A.-M.; von der Gathen, P.; Bougoudis, I.; Seo, S.; Bösch, T. & Burrows, J. P., 2023: Investigation of meteorological conditions and BrO during Ozone Depletion Events in Ny-Ålesund between 2010 and 2021, Atmos. Chem. Phys., 23, 9787–9814, https://doi.org/10.5194/acp-23-9787-2023

Xi, H., Bretagnon, M., Losa, S. N., Brotas, V., Gomes, M., Peeken, I., Alvarado, L. M. A., Mangin, A., and Bracher, A., 2023: Satellite monitoring of surface phytoplankton functional types in the Atlantic Ocean over 20 years (2002–2021), in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023.

Ansmann, A.; Ohneiser, K.; Engelmann, R.; Radenz, M.; Griesche, H.; Hofer, J.; Althausen, D.; Creamean, J. M.; Boyer, M. C.; Knopf, D. A.; Dahlke, S.; Maturilli, M.; Gebauer, H.; Bühl, J.; Jimenez, C.; Seifert, P. & Wandinger, U., 2023: Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 — light-extinction, CCN, and INP levels from the boundary layer to the tropopause, Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023

Rückert, J. E.; Rostosky, P.; Huntemann, M.; Clemens-Sewall, D.; Ebell, K.; Kaleschke, L.; Lemmetyinen, J.; Macfarlane, A. R.; Naderpour, R.; Stroeve, J.; Walbröl, A. & Spreen, G., 2023: Sea ice concentration satellite retrievals influenced by surface changes due to warm air intrusions: A case study from the MOSAiC expedition, Elem. Sci. Anth., 11 (1): 00039, https://doi.org/10.1525/elementa.2023.00039

Thielke, L.; Fuchs, N.; Spreen, G.; Tremblay, B.; Birnbaum, G.; Huntemann, M.; Hutter, N.; Itkin, P.; Jutila, A. & Webster, M. A., 2023: Preconditioning of summer melt ponds from winter sea ice surface temperature, Geophys. Res. Lett., 50, e2022GL101493, https://doi.org/10.1029/2022GL101493

Niehaus, H.; Spreen, G.; Birnbaum, G.; Istomina, L.; Jäkel, E.; Linhardt, F.; Neckel, N.; Fuchs, N.; Nicolaus, M.; Sperzel, T.; Tao, R.; Webster, M. & Wright, N., 2023: Sea Ice Melt Pond Fraction Derived From Sentinel-2 Data: Along the MOSAiC Drift and Arctic-Wide, Geophys. Res. Lett., 50, e2022GL102102, https://doi.org/10.1029/2022GL102102

Maherndl, N.; Maahn, M.; Moser, M.; Lucke, J.; Mech, M. & Risse, N., 2023: Airborne observations of riming in arctic mixed-phase clouds during HALO-(AC)3, EGU General Assembly 2023, 24–28 Apr 2023, EGU23-5000, https://doi.org/10.5194/egusphere-egu23-5000

Maherndl, N.; Maahn, M.; Tridon, F.; Leinonen, J.; Ori, D. & Kneifel, S., 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation, Q.J.R. Meteorol. Soc., 149(757), 3562–3581, https://doi.org/10.1002/qj.4573

Maahn, M., 2023: Video In Situ Snowfall Sensor (VISSS) data processing library V2023.1.6, Zenodo, https://doi.org/10.5281/zenodo.7650394

Maahn, M., 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1, Zenodo, https://doi.org/10.5281/zenodo.7640801

Maahn, M.; Haseneder-Lind, R. & Krobot, P., 2023: Hardware Design of the Video In Situ Snowfall Sensor v2 (VISSS2), Zenodo, https://doi.org/10.5281/zenodo.7640821

Zanatta, M., Mertes, S., Jourdan, O., Dupuy, R., Järvinen, E., Schnaiter, M., Eppers, O., Schneider, J., Jurányi, Z., and Herber, A., 2023: Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer, Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023.

Schirmacher, I.; Kollias, P.; Lamer, K.; Mech, M.; Pfitzenmaier, L.; Wendisch, M. & Crewell, S., 2023: Assessing Arctic low-level clouds and precipitation from above — a radar perspective, Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023

Ji, D.; Palm, M.; Ritter, C.; Richter, P.; Sun, X.; Buschmann, M. & Notholt, J., 2023: Ground-based remote sensing of aerosol properties using high-resolution infrared emission and lidar observations in the High Arctic, Atmos. Meas. Tech., 16, 1865-1879, https://doi.org/10.5194/amt-16-1865-2023

Vinjamuri, K. S., Vountas, M., Lelli, L., Stengel, M., Shupe, M. D., Ebell, K., and Burrows, J. P., 2023: Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic, Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023.

Becker, S., Ehrlich, A., Schäfer, M., and Wendisch, M., 2023: Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait, Atmos. Chem. Phys., 23, 7015–7031, https://doi.org/10.5194/acp-23-7015-2023

Akansu, E.F., Siebert, H., Dahlke, S. et al. Tethered Balloon-Borne Turbulence Measurements in Winter and Spring during the MOSAiC Expedition. Sci Data 10, 723 (2023). https://doi.org/10.1038/s41597-023-02582-5

Kirbus, B.; Tiedeck, S.; Camplani, A.; Chylik, J.; Crewell, S.; Dahlke, S.; Ebell, K.; Gorodetskaya, I.; Griesche, H.; Handorf, D.; Höschel, I.; Lauer, M.; Neggers, R.; Rückert, J.; Shupe, M. D.; Spreen, G.; Walbröl, A.; Wendisch, M. & Rinke, A., 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1147848

Jurányi, Z.; Zanatta, M.; Lund, M. T.; Samset, B. H.; Skeie, R. B.; Sharma, S.; Wendisch, M. & Herber, A., 2023: Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic, Commun. Earth Environ., 4, https://doi.org/10.1038/s43247-023-00749-x

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

Linke, O., Quaas, J., Baumer, F., Becker, S., Chylik, J., Dahlke, S., Ehrlich, A., Handorf, D., Jacobi, C., Kalesse-Los, H., Lelli, L., Mehrdad, S., Neggers, R. A. J., Riebold, J., Saavedra Garfias, P., Schnierstein, N., Shupe, M. D., Smith, C., Spreen, G., Verneuil, B., Vinjamuri, K. S., Vountas, M., and Wendisch, M., 2023: Constraints on simulated past Arctic amplification and lapse rate feedback from observations, Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023.

Mchedlishvili, A., Lüpkes, C., Petty, A., Tsamados, M., and Spreen, G., 2023: New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data, The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023.

Mei, L.; Burrows, J.; Zhao, X.; Vountas, M.; Rozanov, V.; Guo, H.; Li, X.; Nakoudi, K. & Ritter, C., 2023: Changes in the Aerosol optical thickness above the ocean in the Arctic observed from space during 1981 and 2020: datasets, trends and origins, Bull. Am. Meteorol. Soc., [submitted to Bull. Am. Meteorol. Soc.]

Lelli, L.; Vountas, M.; Khosravi, N. & Burrows, J. P., 2023: Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds, Atmos. Chem. Phys., 23, 2579-2611, https://doi.org/10.5194/acp-23-2579-2023

Egerer, U., Cassano, J. J., Shupe, M. D., de Boer, G., Lawrence, D., Doddi, A., Siebert, H., Jozef, G., Calmer, R., Hamilton, J., Pilz, C., and Lonardi, M., 2023:  Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign, Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023.

Klingebiel, M., Ehrlich, A., Ruiz-Donoso, E., Risse, N., Schirmacher, I., Jäkel, E., Schäfer, M., Wolf, K., Mech, M., Moser, M., Voigt, C., and Wendisch, M., 2023: Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean, Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023.

Saavedra Garfias, P.; Kalesse-Los, H.; Albedyll, L. V.; Griesche, H. & Spreen, G., 2023: Cloud Macro-and Microphysical Properties as Coupled to Sea Ice Leads During the MOSAiC Expedition, ESS Open Archive, Authorea,Inc., https://doi.org/10.22541/essoar.167397335.54837214/v1

Kanzow, T., The Expedition PS131 of the Research Vessel Polarstern to the Fram Strait in 2022, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 2023, https://doi.org/10.57738/BzPM_0770_2023

Chylik, J., Chechin, D., Dupuy, R., Kulla, B. S., Lüpkes, C., Mertes, S., Mech, M., and Neggers, R. A. J., 2023: Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water, Atmos. Chem. Phys., https://doi.org/10.5194/acp-23-4903-2023.

2022

M. Mech, A. Ehrlich, A. Herber, C. Lüpkes, M. Wendisch, S. Becker, Y. Boose, D. Chechin, S. Crewell, R. Dupuy, C. Gourbeyre, J. Hartmann, E. Jäkel, O. Jourdan, L.-L. Kliesch, M. Klingebiel, B. S. Kulla, G. Mioche, M. Moser, N. Risse, E. Ruiz-Donoso, M. Schäfer, J. Stapf & C. Voigt, 2022, MOSAiC-ACA and AFLUX – Arctic airborne campaigns characterizing the exit area of MOSAiC. Sci Data 9, 790. https://doi.org/10.1038/s41597-022-01900-7

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Jackson, T., Chuprin, A., Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Brewin, R. J. W., Canuti, E., Chavez, F. P., Cianca, A., Claustre, H., Clementson, L., Crout, R., Ferreira, A., Freeman, S., Frouin, R., García-Soto, C., Gibb, S. W., Goericke, R., Gould, R., Guillocheau, N., Hooker, S. B., Hu, C., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S., Loisel, H., Mannino, A., Martinez-Vicente, V., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger, F., Neeley, A., Novak, M., O’Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Röttgers, R., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Thomas, C., Thomas, R., Tilstone, G., Tracana, A., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wojtasiewicz, B., Wright, S., and Zibordi, G., 2022: A compilation of global bio-optical in situ data for ocean colour satellite applications – version three, Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022.

Pasquier, J. T., Henneberger, J., Ramelli, F., Lauber, A., David, R. O., Wieder, J., Carlsen, T., Gierens, R., Maturilli, M., and Lohmann, U., 2022: Conditions favorable for secondary ice production in Arctic mixed-phase clouds, Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022.

Pilz, C., Düsing, S., Wehner, B., Müller, T., Siebert, H., Voigtländer, J., and Lonardi, M., 2022: CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere, Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022.

Aue, L., Vihma, T., Uotila, P., & Rinke, A. (2022). New insights into cyclone impacts on sea ice in the Atlantic sector of the Arctic Ocean in winter. Geophys. Res. Lett., 49, e2022GL100051. https://doi.org/10.1029/2022GL100051

Pasquier, J. T., David, R. O., Freitas, G., Gierens, R., Gramlich, Y., Haslett, S., Li, G., Schäfer, B., Siegel, K., Wieder, J., Adachi, K., Belosi, F., Carlsen, T., Decesari, S., Ebell, K., Gilardoni, S., Gysel-Beer, M., Henneberger, J., Inoue, J., Kanji, Z. A., Koike, M., Kondo, Y., Krejci, R., Lohmann, U., Maturilli, M., Mazzolla, M., Modini, R., Mohr, C., Motos, G., Nenes, A., Nicosia, A., Ohata, S., Paglione, M., Park, S., Pileci, R. E., Ramelli, F., Rinaldi, M., Ritter, C., Sato, K., Storelvmo, T., Tobo, Y., Traversi, R., Viola, A., & Zieger, P. (2022). The Ny-Ålesund Aerosol Cloud Experiment (NASCENT): Overview and First Results, Bulletin of the American Meteorological Society, 103(11), E2533-E2558. Retrieved Jan 3, 2023, from https://journals.ametsoc.org/view/journals/bams/103/11/BAMS-D-21-0034.1.xml

van Pinxteren, M., Robinson, T.-B., Zeppenfeld, S., Gong, X., Bahlmann, E., Fomba, K. W., Triesch, N., Stratmann, F., Wurl, O., Engel, A., Wex, H., and Herrmann, H., 2022: High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean, Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022.

Dall’Osto, M.; Sotomayor-Garcia, A.; Cabrera-Brufau, M.; Berdalet, E.; Vaqué, D.; Zeppenfeld, S.; van Pinxteren, M.; Herrmann, H.; Wex, H.; Rinaldi, M.; Paglione, M.; Beddows, D.; Harrison, R.; Avila, C.; Martin-Martin, R. P.; Park, J. & Barbosa, A., 2022, Leaching material from Antarctic seaweeds and penguin guano affects cloud-relevant aerosol production, Sci. Total Environ., 831, 154772, https://doi.org/10.1016/j.scitotenv.2022.154772

Álvarez, E., Losa, S. N., Bracher, A., Thoms, S., & Völker, C., 2022. Phytoplankton light absorption impacted by photoprotective carotenoids in a global ocean spectrally-resolved biogeochemistry model. J. Adv. Model. Earth Syst., 14, e2022MS003126. https://doi.org/10.1029/2022MS003126

Karami K., S. Mehrdad, and Ch. Jacobi, 2022: Response of the resolved planetary wave activity and amplitude to turned off gravity waves in the UA-ICON general circulation model, J. Atmos. Sol.-Terr. Phys., 241, 105967, https://doi.org/10.1016/j.jastp.2022.105967.

King, F., Duffy, G., Milani, L., Fletcher, C. G., Pettersen, C., and Ebell, K., 2022: DeepPrecip: a deep neural network for precipitation retrievals, Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022.

M. Lonardi, C. Pilz, E. F. Akansu, S. Dahlke, U. Egerer, A. Ehrlich, H. Griesche, A. J. Heymsfield, B. Kirbus, C. G. Schmitt, M. D. Shupe, H. Siebert, B. Wehner, M. Wendisch, 2022; Tethered balloon-borne profile measurements of atmospheric properties in the cloudy atmospheric boundary layer over the Arctic sea ice during MOSAiC: Overview and first results. Elementa: Science of the Anthropocene; 10 (1): 000120. doi: https://doi.org/10.1525/elementa.2021.000120

Benavent, N., Mahajan, A.S., Li, Q. et al., incl. Blechschmidt, A.-M., Zilker, B., Richter, A., 2022. Substantial contribution of iodine to Arctic ozone destruction. Nat. Geosci., https://doi.org/10.1038/s41561-022-01018-w

E. Mahieu, E. V. Fischer, B. Franco, M. Palm, T. Wizenberg, D. Smale, L. Clarisse, C. Clerbaux, P.-F. Coheur, J. W. Hannigan, E. Lutsch, J. Notholt, I. Pardo Cantos, M. Prignon, C. Servais, K. Strong, 2021; First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data. Elementa: Science of the Anthropocene,  9 (1): 00027. doi: https://doi.org/10.1525/elementa.2021.00027

Steinbrecht, W., Kubistin, D., Plass-Dülmer, C., Davies, J., Tarasick, D. W., von der Gathen, P., et al. incl Palm, M., Notholt, J., 2021. COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere. Geophys. Res. Lett. 48, e2020GL091987. https://doi.org/10.1029/2020GL091987

Malina, E., Veihelmann, B., Buschmann, M., Deutscher, N. M., Feist, D. G., and Morino, I., 2022: On the consistency of methane retrievals using the Total Carbon Column Observing Network (TCCON) and multiple spectroscopic databases, Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022.

Sha, M. K., Langerock, B., Blavier, J.-F. L., Blumenstock, T., Borsdorff, T., Buschmann, M., Dehn, A., De Mazière, M., Deutscher, N. M., Feist, D. G., García, O. E., Griffith, D. W. T., Grutter, M., Hannigan, J. W., Hase, F., Heikkinen, P., Hermans, C., Iraci, L. T., Jeseck, P., Jones, N., Kivi, R., Kumps, N., Landgraf, J., Lorente, A., Mahieu, E., Makarova, M. V., Mellqvist, J., Metzger, J.-M., Morino, I., Nagahama, T., Notholt, J., Ohyama, H., Ortega, I., Palm, M., Petri, C., Pollard, D. F., Rettinger, M., Robinson, J., Roche, S., Roehl, C. M., Röhling, A. N., Rousogenous, C., Schneider, M., Shiomi, K., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., Uchino, O., Velazco, V. A., Vigouroux, C., Vrekoussis, M., Wang, P., Warneke, T., Wizenberg, T., Wunch, D., Yamanouchi, S., Yang, Y., and Zhou, M., 2021: Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations, Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021.

Lu, J., Scarlat, R., Heygster, G., & Spreen, G., 2022. Reducing weather influences on an 89 GHz sea ice concentration algorithm in the Arctic using retrievals from an optimal estimation method. J. Geophys. Res. Oceans, 127, e2019JC015912. https://doi.org/10.1029/2019JC015912

Barrientos Velasco, C., 2022: Radiative effects of clouds in the Arctic, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-821848

Gryanik, V.M., Lüpkes, C. (2022): A Package of Momentum and Heat Transfer Coefficients for the Stable Surface Layer Extended by New Coefficients over Sea Ice. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-022-00730-9

Barrientos-Velasco, C., Deneke, H., Hünerbein, A., Griesche, H. J., Seifert, P., and Macke, A., 2022: Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106, Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022.

Hachmeister, J., Schneising, O., Buchwitz, M., Lorente, A., Borsdorff, T., Burrows, J. P., Notholt, J., and Buschmann, M., 2022: On the influence of underlying elevation data on Sentinel-5 Precursor TROPOMI satellite methane retrievals over Greenland, Atmos. Meas. Tech., 15, 4063–4074, https://doi.org/10.5194/amt-15-4063-2022.

von Lerber, A., Mech, M., Rinke, A., Zhang, D., Lauer, M., Radovan, A., Gorodetskaya, I., and Crewell, S., 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022.

Shi, Q., Su, J., Spreen, G., & Yang, Q., 2022. An improved sea-ice velocity retrieval algorithm based on 89 GHz brightness temperature satellite data in the Fram Strait. Earth Space Sci., 9, e2021EA002170. https://doi.org/10.1029/2021EA002170

Richter, P., Palm, M., Weinzierl, C., Griesche, H., Rowe, P. M., and Notholt, J., 2022: A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017, Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022.

Griesche, H., 2022: Arctic low-level mixed-phase clouds and their complex interactions with aerosol and radiation – Remote sensing of the Arctic troposphere with the shipborne supersite OCEANET-Atmosphere, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-797651

Michaelis, J., Schmitt, A. U., Lüpkes, C., Hartmann, J., Birnbaum, G., and Vihma, T., 2022: Observations of marine cold-air outbreaks: a comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE), Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022.

Dethloff, K., Maslowski, W., Hendricks, S., Lee, Y. J., Goessling, H. F., Krumpen, T., Haas, C., Handorf, D., Ricker, R., Bessonov, V., Cassano, J. J., Kinney, J. C., Osinski, R., Rex, M., Rinke, A., Sokolova, J., and Sommerfeld, A., 2022: Arctic sea ice anomalies during the MOSAiC winter 2019/20, The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022.

L. Mei, V. Rozanov, Z. Jiao, J. P. Burrows, 2022, A new snow bidirectional reflectance distribution function model in spectral regions from UV to SWIR: Model development and application to ground-based, aircraft and satellite observations, ISPRS J. Photogramm. Remote Sens., 188, 269-285, https://doi.org/10.1016/j.isprsjprs.2022.04.010

Linke, O. and Quaas, J., 2022. The Impact of CO2-Driven Climate Change on the Arctic Atmospheric Energy Budget in CMIP6 Climate Model Simulations. Tellus A: Dyn. Meteorol. Oceanogr., 74(2022), pp.106–118. http://doi.org/10.16993/tellusa.29

Oelker J., Losa S. N., Richter A., Bracher A., 2022: TROPOMI-retrieved underwater light attenuation in three spectral regions in the ultraviolet to blue. Front. Mar. Sci. 9. 787992. doi: 10.3389/fmars.2022.787992

Bougoudis, I., Blechschmidt, A.-M., Richter, A., Seo, S., and Burrows, J. P., 2022: Simulating tropospheric BrO in the Arctic using an artificial neural network, Atmos. Environ., 276, 119032, https://doi.org/10.1016/j.atmosenv.2022.119032.

Geerts, B.; Giangrande, S. E.; McFarquhar, G. M.; Xue, L.; Abel, S. J.; Comstock, J. M.; Crewell, S.; DeMott, P. J.; Ebell, K.; Field, P.; Hill, T. C. J.; Hunzinger, A.; Jensen, M. P.; Johnson, K. L.; Juliano, T. W.; Kollias, P.; Kosovic, B.; Lackner, C.; Luke, E.; Lüpkes, C.; Matthews, A. A.; Neggers, R.; Ovchinnikov, M.; Powers, H.; Shupe, M. D.; Spengler, T.; Swanson, B. E.; Tjernström, M.; Theisen, A. K.; Wales, N. A.; Wang, Y.; Wendisch, M. & Wu, P., 2022: The COMBLE Campaign: A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks, Bull. Am. Meteorol. Soc., 103, E1371 – E1389, https://doi.org/10.1175/BAMS-D-21-0044.1

Salzmann, M.; Ferrachat, S.; Tully, C.; Münch, S.; Watson-Parris, D.; Neubauer, D.; Siegenthaler-Le Drian, C.; Rast, S.; Heinold, B.; Crueger, T.; Brokopf, R.; Mülmenstädt, J.; Quaas, J.; Wan, H.; Zhang, K.; Lohmann, U.; Stier, P. & Tegen, I., 2022: The Global Atmosphere-aerosol Model ICON-A-HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness, J. Adv. Model. Earth Syst., 14, e2021MS002699, https://doi.org/10.1029/2021MS002699

Walbröl, A., Crewell, S., Engelmann, R., Orlandi, E., Grische, H., Radenz, M., Hofer, J., Althausen, D., Maturilli, M. & Ebell, K., 2022: Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci Data 9, 534. https://doi.org/10.1038/s41597-022-01504-1

 

Chellini, G.; Gierens, R. & Kneifel, S., 2022: Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level, J. Geophys. Res. Atmos., 127, e2022JD036860, https://doi.org/10.1029/2022JD036860

Papakonstantinou-Presvelou, I.; Sourdeval, O. & Quaas, J., 2022: Strong Ocean/Sea-Ice Contrasts Observed in Satellite-Derived Ice Crystal Number Concentrations in Arctic Ice Boundary-Layer Clouds, Geophys. Res. Lett., 49, e2022GL098207, https://doi.org/10.1029/2022GL098207

Becker, S., Ehrlich, A., Jäkel, E., Carlsen, T., Schäfer, M., and Wendisch, M., 2022: Airborne measurements of directional reflectivity over the Arctic marginal sea ice zone, Atmos. Meas. Tech., 15, 2939–2953, https://doi.org/10.5194/amt-15-2939-2022.

Schäfer, M., Wolf, K., Ehrlich, A., Hallbauer, C., Jäkel, E., Jansen, F., Luebke, A. E., Müller, J., Thoböll, J., Röschenthaler, T., Stevens, B., and Wendisch, M., 2022: VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties, Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022.

Dahlke, S., Solbès, A., & Maturilli, M., 2022. Cold air outbreaks in Fram Strait: Climatology, trends, and observations during an extreme season in 2020. J. Geophys. Res. Atmos., 127, e2021JD035741. https://doi.org/10.1029/2021JD035741

Michaelis, J. and Lüpkes, C., 2022: The Impact of Lead Patterns on Mean Profiles of Wind, Temperature, and Turbulent Fluxes in the Atmospheric Boundary Layer over Sea Ice. Atmosphere, 13, 148. https://doi.org/10.3390/atmos13010148

Mchedlishvili, A., Spreen, G., Melsheimer, C., and Huntemann, M., 2022: Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval, Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022.

Angelopoulos M, Damm E, Simões Pereira P, Abrahamsson K, Bauch D, Bowman J, Castellani G, Creamean J, Divine DV, Dumitrascu A, Fons SW, Granskog MA, Kolabutin N, Krumpen T, Marsay C,  Nicolaus M, Oggier M, Rinke A, Sachs T, Shimanchuk E, Stefels J, Stephens M, Ulfsbo A, Verdugo J, Wang L, Zhan L and Haas C, 2022, Deciphering the Properties of Different Arctic Ice Types During the Growth Phase of MOSAiC: Implications for Future Studies on Gas Pathways. Front. Earth Sci. 10:864523. doi: 10.3389/feart.2022.864523

Salzmann, M., Ferrachat, S., Tully, C., Münch, S., Watson-Parris, D., Neubauer, D., et al., 2022. The global atmosphere-aerosol model ICON-A-HAM2.3–Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness. J. Adv. Model. Earth Syst., 14, e2021MS002699. https://doi.org/10.1029/2021MS002699

Hannigan, J. W., Ortega, I., Shams, S. B., Blumenstock, T., Campbell, J. E., Conway, S., V. Flood O. Garcia D. Griffith M. Grutter F. Hase P. Jeseck N.Jones E. Mahieu M. Makarova M. De Mazière I. Morino I. Murata T. Nagahama H. Nakijima J. Notholt M. Palm A. Poberovskii M. Rettinger J. Robinson A. N. Röhling M. Schneider C. Servais D. Smale W. Stremme K. Strong R. Sussmann Y. Te C. Vigouroux T. Wizenberg, 2022. Global atmospheric OCS trend analysis from 22 NDACC stations. J. Geophys. Res. Atmos., 127, e2021JD035764. https://doi.org/10.1029/2021JD035764

Viceto, C., Gorodetskaya, I. V., Rinke, A., Maturilli, M., Rocha, A., and Crewell, S., 2022: Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model, Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022.

Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere.  Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.

Rabe, B., Heuzé, C.,Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Bauch, D., Basque, C., Baumann, T. M. Chen, D., Cole, S. T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D. V. Doglioni, F., Ebert, F., Fang, Y.-C., Fer, I., Fong, A. A., Gradinger, R., Granskog, M. A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R. A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Lei, R., Li, T., Torres-Valdés, S., Lin, L., Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., MacKay, R., Mallet, M., Mallett, R. D. C., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O’Brien, J. K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M. D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J. M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., Zhu, J., 2022: Overview of the MOSAiC expedition – Physical oceanography. Elementa: Science of the Anthropocene, 10 (1): 00062, https://doi.org/10.1525/elementa.2021.00062.

Bresson, H., Rinke, A., Mech, M., Reinert, D., Schemann, V., Ebell, K., Maturilli, M., Viceto, C., Gorodetskaya, I., and Crewell, S., 2022: Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation, Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022.

Schneider, T., C. Lüpkes, W. Dorn, D. Chechin, D. Handorf, S. Khosravi, V.M. Gryanik, I. Makhotina, and A. Rinke, 2022: Sensitivity to changes in the surface-layer turbulence parameterization for stable conditions in winter: A case study with a regional model over the Arctic, Atm. Sci. Lett., 23, e1066, https://doi.org/10.1002/asl.1066

2021

Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V., 2021: Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021.

Saavedra Garfias, P., H. Kalesse-Los, 2021, W. Schimmel. Climatology of clouds containing supercooled liquid in the Western and Central Arctic. ESS Open Archive. DOI: 10.1002/essoar.10509918.1

Saavedra Garfias, P., H. Kalesse-Los, 2021. Classification of cloud microphysical properties as a function of sea ice concentration conditions during MOSAiC. ESS Open Archive. DOI: 10.1002/essoar.10509919.1

Nakoudi, K., 2021: Properties and radiative effect of aerosol and cirrus clouds over the European Arctic, Dissertation, Universität Potsdam, https://doi.org/10.25932/publishup-53036

Ivy Tan, Georgia Sotiropoulou, Patrick Taylor, Lauren Zamora, Manfred Wendisch, 2021: A review of the factors influencing Arctic liquid-containing clouds: progress and outlook, Accepted by AGU Books. To appear in “Cloud Physics and Dynamics: Showers and Shade from Earth’s Atmosphere”-

Nixdorf, Uwe, Dethloff, Klaus, Rex, Markus, Shupe, Matthew, Sommerfeld, Anja, Perovich, Donald K., Nicolaus, Marcel, Heuzé, Céline, Rabe, Benjamin, Loose, Brice, Damm, Ellen, Gradinger, Rolf, Fong, Allison, Maslowski, Wieslaw, Rinke, Annette, Kwok, Ronald, Spreen, Gunnar, Wendisch, Manfred, Herber, Andreas, Boetius, Antje. (2021). MOSAiC Extended Acknowledgement. Zenodo. https://doi.org/10.5281/zenodo.5541624

Nicolaus, M, Perovich, DK, Spreen, G, Granskog, MA, Albedyll, LV, Angelopoulos, M, Anhaus, P, Arndt, S, Belter, HJ, Bessonov, V, Birnbaum, G, Brauchle, J, Calmer, R, Cardellach, E, Cheng, B, Clemens-Sewall, D, Dadic, R, Damm, E, de Boer, G, Demir, O, Dethloff, K, Divine, DV, Fong, AA, Fons, S, Frey, MM, Fuchs, N, Gabarro´, C, Gerland, S, Goessling, HF, Gradinger, R, Haapala, J, Haas, C, Hamilton, J, Hannula, H-R, Hendricks, S, Herber, A, Heuze´ , C, Hoppmann, M, Høyland, KV, Huntemann, M, Hutchings, JK, Hwang, B, Itkin, P, Jacobi, H-W, Jaggi, M, Jutila, A, Kaleschke, L, Katlein, C, Kolabutin, N, Krampe, D, Kristensen, SS, Krumpen, T, Kurtz, N, Lampert, A, Lange, BA, Lei, R, Light, B, Linhardt, F, Liston, GE, Loose, B, Macfarlane, AR, Mahmud, M, Matero, IO, Maus, S, Morgenstern, A, Naderpour, R, Nandan,V, Niubom, A, Oggier, M, Oppelt, N, Pätzold, F, Perron, C, Petrovsky,T, Pirazzini, R, Polashenski, C, Rabe, B, Raphael, IA, Regnery, J, Rex, M, Ricker, R, Riemann-Campe, K, Rinke, A, Rohde, J, Salganik, E, Scharien, RK, Schiller, M, Schneebeli, M, Semmling, M, Shimanchuk, E, Shupe, MD, Smith, MM, Smolyanitsky,V, Sokolov,V, Stanton, T, Stroeve, J,Thielke, L,Timofeeva, A,Tonboe, RT,Tavri, A,Tsamados, M,Wagner, DN,Watkins, D,Webster, M,Wendisch, M. 2021. Overview of the MOSAiC expedition: Snow and sea ice. Elementa: Science of the Anthropocene 9(1). DOI: https://doi.org/10.1525/elementa.2021.000046

Stapf, J., 2021: Influence of Surface and Atmospheric Thermodynamic Properties on the Cloud Radiative Forcing and Radiative Energy Budget in the Arctic, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-777567.

Jäkel, E.; Carlsen, T.; Ehrlich, A.; Wendisch, M.; Schäfer, M.; Rosenburg, S.; Nakoudi, K.; Zanatta, M.; Birnbaum, G.; Helm, V.; Herber, A.; Istomina, L.; Mei, L.; Rohde, A., 2021. Measurements and Modeling of Optical-Equivalent Snow Grain Sizes under Arctic Low-Sun Conditions. Remote Sens., 13, 4904. https://doi.org/10.3390/rs13234904

Ohata, S.; Koike, M.; Yoshida, A.; Moteki, N.; Adachi, K.; Oshima, N.; Matsui, H.; Eppers, O.; Bozem, H.; Zanatta, M. & Herber, A. B., 2021. Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring, Atmos. Chem. Phys., 21, 15861-15881, https://doi.org/10.5194/acp-21-15861-2021

Hofmann, Z., von Appen, W.-J., & Wekerle, C., 2021. Seasonal and mesoscale variability of the two Atlantic Water recirculation pathways in Fram Strait. J. Geophys. Res. Oceans, 126, e2020JC017057. https://doi.org/10.1029/2020JC017057

Zeppenfeld, S., 2021: Carbohydrates in the Arctic and the Southern Ocean – Chemical Analysis, Transfer from the Sea to the Atmosphere and Potential Relevance for Cloud Formation. Dissertation, Universität Leipzig.

Eppers, O., 2021: Chemical composition and origin of aerosol particles involved in summertime Arctic cloud processes, Dissertation, Universität Mainz, https://hdl.handle.net/21.11116/0000-0009-E253-A

Sun, B., M. Schäfer, A. Ehrlich, E. Jäkel, and M. Wendisch, 2021: Influence of atmospheric adjacency effect on top-of-atmosphere radiances and its correction in the retrieval of Lambertian surface reflectivity based on three-dimensional radiative transfer. Rem. Sens. Environment, 263, 112543, https://doi.org/10.1016/j.rse.2021.112543

Bougoudis, I., 2021: Satellite based remote sensing of halogens in the Arctic troposphere,under the impact of Arctic Amplification, Dissertation, Universität Bremen, https://doi.org/10.26092/elib/1115

Wang, D.; Guo, J.; Xu, H.; Li, J.; Lv, Y.; Solanki, R.; Guo, X.; Han, Y.; Chen, T.; Ding, M.; Chen, A.; Bian, L. and Rinke, A., 2021. Vertical structures of temperature inversions and clouds derived from high-resolution radiosonde measurements at Ny-Alesund, Svalbard. Atm. Res., 254, 105530, 10.1016/j.atmosres.2021.105530

Inoue, J., Sato, K., Rinke, A., Cassano, J. J., Fettweis, X., Heinemann, G., et al., 2021. Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic Ocean. J. Geophys. Res.: Atmos., 126, e2020JD033904. https://doi.org/10.1029/2020JD033904

M. Akperov, W. Zhang, P. A. Miller, I. I. Mokhov, V. A. Semenov, H. Matthes, B. Smith and A. Rinke, 2021. Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model, Env. Res. Lett., 16, 064076, https://doi.org/10.1088/1748-9326/ac0566

Zhang, X., Fu, Y., Han, Z., J.E. Overland, A. Rinke, H. Tang, T. Vihma, and M.Y. Wang, 2021. Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Adv. Atmos. Sci. . https://doi.org/10.1007/s00376-021-1229-1

A. Rinke, J. J. Cassano, E. N. Cassano, R. Jaiser, D. Handorf, 2021; Meteorological conditions during the MOSAiC expedition: Normal or anomalous?. Elementa-Sci. Anthrop.  9 (1): 00023. doi: https://doi.org/10.1525/elementa.2021.00023

Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J., 2021: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021.

Maahn, M., Goren, T., Shupe, M. D., and de Boer, G., 2021. Liquid containing clouds at the North Slope of Alaska demonstrate sensitivity to local industrial aerosol emissions. Geophys. Res. Lett., 48, e2021GL094307. https://doi.org/10.1029/2021GL094307

Herber, A., Becker, S., Belter, H. J., Brauchle, J., Ehrlich, A., Klingebiel, M., Krumpen, T., Lüpkes, C., Mech, M., Moser, M., & Wendisch, M., 2021. MOSAiC Expedition: Airborne Surveys with Research Aircraft POLAR 5 and POLAR 6 in 2020 . In Berichte zur Polar- und Meeresforschung = Reports on Polar and Marine Research (Vol. 754, pp. 1–99). Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung. https://doi.org/10.48433/BzPM_0754_2021

Gryanik, V. M., Lüpkes, C., Sidorenko, D., and Grachev, A., 2021. A universal approach for the non-iterative parametrization of near-surface turbulent fluxes in climate and weather prediction models. J. Adv. Model. Earth Syst., 13, e2021MS002590. https://doi.org/10.1029/2021MS002590

Ohneiser, K., Ansmann, A., Chudnovsky, A., Engelmann, R., Ritter, C., Veselovskii, I., Baars, H., Gebauer, H., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Dahlke, S., and Maturilli, M., 2021: The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020 , Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021.

Egerer, U., 2021: A new set of tethered balloon-borne instrument payloads for collocated turbulence and radiation measurements in the cloudy Arctic boundary layer – first applications, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-760732

Jafariserajehlou, S., 2021: Aerosol, Surface and Cloud retrieval using passive remote sensing over the Arctic, Dissertation, Universität Bremen, http://dx.doi.org/10.26092/elib/1170

Hartmann, M., 2021: Ice Nucleating Particles in the Arctic – A story of their abundance, properties and possible origin from the Little Ice Age to the current age of unpreceded Arctic warming. Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-764184

Pohl, C., 2021: A study of Arctic sea-ice surface albedo and its uncertainty: impact varying insolation and instrument characteristics, Dissertation, Universität Bremen, http://dx.doi.org/10.26092/elib/1290

Engelmann, R., Ansmann, A., Ohneiser, K., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Dahlke, S., Maturilli, M., Veselovskii, I., Jimenez, C., Wiesen, R., Baars, H., Bühl, J., Gebauer, H., Haarig, M., Seifert, P., Wandinger, U., and Macke, A., 2021: Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction, Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021.

Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F., 2021: Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N, Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021.

Hoffmann, E. H., Heinold, B., Kubin, A., Tegen, I., & Herrmann, H., 2021: The importance of the representation of DMS oxidation in global chemistry-climate simulations. Geophys. Res. Lett., 48, e2021GL094068. https://doi.org/10.1029/2021GL094068

Rösel, A., Farrell, S. L., Nandan, V., Richter-Menge, J., Spreen, G., Divine, D. V., Steer, A., Gallet, J.-C., and Gerland, S., 2021: Implications of surface flooding on airborne estimates of snow depth on sea ice, The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021.

Karlsson, L., Krejci, R., Koike, M., Ebell, K., and Zieger, P., 2021: A long-term study of cloud residuals from low-level Arctic clouds, Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021.

Griesche, H. J., Ohneiser, K., Seifert, P., Radenz, M., Engelmann, R., and Ansmann, A., 2021: Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds, Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021.

Crewell, S., Ebell, K., Konjari, P., Mech, M., Nomokonova, T., Radovan, A., Strack, D., Triana-Gómez, A. M., Noël, S., Scarlat, R., Spreen, G., Maturilli, M., Rinke, A., Gorodetskaya, I., Viceto, C., August, T., and Schröder, M., 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021.

Kretzschmar, J., 2021: Improving the representation of Arctic clouds in atmospheric models across scales using observations, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-752400.

Hofmann, Z., von Appen, W.-J., & Wekerle, C., 2021. Seasonal and Mesoscale Variability of the Two Atlantic Water Recirculation Pathways in Fram Strait. J. Geophys. Res. Oceans, 126, e2020JC017057. https://doi.org/10.1029/2020JC017057

Zanatta, M., Herber, A., Jurányi, Z., Eppers, O., Schneider, J., and Schwarz, J. P., 2021: Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer, Atmos. Chem. Phys., 21, 9329–9342, https://doi.org/10.5194/acp-21-9329-2021.

Kwiezinski, C., Weller, C., van Pinxteren, D., Brüggemann, M., Mertes, S., Stratmann, F., Herrmann, H., 2021: Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry. J Sep Sci., 44, 2343 – 2357. https://doi.org/10.1002/jssc.202001048.

Shestakova, A. A., Chechin, D. G., Lüpkes, C., Hartmann, J., and Maturilli, M., 2022: The foehn effect during easterly flow over Svalbard, Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022.

Köhler, R., D. Handorf, Ralf Jaiser, Klaus Dethloff, Günther Zängl, Detlev Majewski, Markus Rex, 2021: Improved Circulation in the Northern Hemisphere by Adjusting Gravity Wave Drag Parameterizations in Seasonal Experiments With ICON-NWP, Earth and Space Sci., 8, e2021EA001676, https://doi.org/10.1029/2021EA001676.

Mei, L., Rozanov, V., Jäkel, E., Cheng, X., Vountas, M., and Burrows, J. P., 2021: The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation, Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021.

Mei, L., Rozanov, V., Pohl, C., Vountas, M., and Burrows, J. P., 2021: The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study, Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021.

Pefanis, V., 2021: Loading of coloured dissolved organic matter in the Arctic Mediterranean Sea and its effects on the ocean heat budget, Dissertation, Universität Bremen, http://dx.doi.org/10.26092/elib/646.

Egerer, U., Ehrlich, A., Gottschalk, M., Griesche, H., Neggers, R. A. J., Siebert, H., and Wendisch, M., 2021: Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top, Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021.

Xi, H., Losa, S.N., Mangin, A., Garnesson, P., Bretagnon, M., Demaria, J., Soppa, M.A., d’Andon, O.H.F., Bracher, A., 2021. Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products. J. Geophys. Res. Oceans, doi: 10.1029/2020JC017127

Zeppenfeld S., M. van Pinxteren, D. van Pinxteren, H. Wex, E. Berdalet, D. Vaqué, M. Dall’Osto, and H. Herrmann, 2021: Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula, ACS Earth Space Chem., Article ASAP,DOI: 10.1021/acsearthspacechem.0c00351

Mewes, D., 2021: Large-scale Horizontal Energy Fluxes into the Arctic Analyzed Using Self-organizing Maps, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-751794.

Ruiz Donoso, E., 2021: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed with airborne remote sensing during the ACLOUD campaign, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-748337

Schacht, J., 2021: Black Carbon Aerosol in the Arctic: Ageing, Transport and Radiative Effects, Dissertation, Universität Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-759652.

Wendisch, M., D. Handorf, I. Tegen, R. A. J. Neggers, and G. Spreen, 2021, Glimpsing the ins and outs of the Arctic atmospheric cauldron, Eos, 102, https://doi.org/10.1029/2021EO155959. Published on 16 March 2021.

Michaelis, J., Lüpkes, C., Schmitt, A. U., Hartmann J., 2021: Modelling and parametrization of the convective flow over leads in sea ice and comparison with airborne observations. QJR Meteorol Soc. ; 147: 914943. https://doi.org/10.1002/qj.3953

Nakoudi, K., Stachlewska, I.S. and Ritter, C., 2021. An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site. Opt. Express29(6), pp.8553-8580. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-6-8553&id=448923

Inoue, J., Sato, K., Rinke, A., Cassano, J. J., Fettweis, X., Heinemann, G. et al., 2021: Clouds and radiation processes in regional climate models evaluated using observations over the ice‐free Arctic Ocean, J. Geophys. Res., 126, e2020JD033904, doi:10.1029/2020JD033904

Stapf, J., Ehrlich, A., and Wendisch, M., 2021. Influence of thermodynamic state changes on surface cloud radiative forcing in the Arctic: a comparison of two approaches using data from AFLUX and SHEBA. J. Geophys. Res., 126, e2020JD033589. https://doi.org/10.1029/2020JD033589

Schoger, S. Y., D. Moisseev, A. von Lerber, S. Crewell, and K. Ebell, 2021: Snowfall rate retrieval for K- and W-band radar measurements designed in Hyytiälä, Finland, and tested at Ny-Ålesund, Svalbard, J. Appl. Meteorol. Clim., 60(3), 273-289, https://doi.org/10.1175/JAMC-D-20-0095.1

Jafariserajehlou, S., Rozanov, V. V., Vountas, M., Gatebe, C. K., and Burrows, J. P., 2021: Simulated reflectance above snow constrained by airborne measurements of solar radiation: implications for the snow grain morphology in the Arctic, Atmos. Meas. Tech., 14, 369–389, https://doi.org/10.5194/amt-14-369-2021.

Yuan, J., Modini, R. L., Zanatta, M., Herber, A. B., Müller, T., Wehner, B., Poulain, L., Tuch, T., Baltensperger, U., and Gysel-Beer, M., 2021: Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter, Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021.

Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V., 2021: Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021.

Pileci, R. E., Modini, R. L., Bertò, M., Yuan, J., Corbin, J. C., Marinoni, A., Henzing, B., Moerman, M. M., Putaud, J. P., Spindler, G., Wehner, B., Müller, T., Tuch, T., Trentini, A., Zanatta, M., Baltensperger, U., and Gysel-Beer, M., 2021: Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites, Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021.

Köhler, R., Handorf, D., Jaiser, R., Dethloff, K., Zängl, G., Majewski, D., & Rex, M., 2021. Improved circulation in the Northern Hemisphere by adjusting gravity wave drag parameterizations in seasonal experiments with ICON-NWP. Earth Space Sci., 8, e2021EA001676. https://doi.org/10.1029/2021EA001676

Nakoudi, K.; Ritter, C.; Stachlewska, I.S., 2021: Properties of Cirrus Clouds over the European Arctic (Ny-Ålesund, Svalbard). Remote Sens., 13, 4555. https://doi.org/10.3390/rs13224555

Rauterkus, R., 2021: Large-Eddy Simulations of Arctic Stratocumulus – Process Representation and Surface  Heterogeneity, Dissertation, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/53928.

2020

Yang, X., Blechschmidt, A.-M., Bognar, K., McClure-Begley, A., Morris, S., Petropavlovskikh, I., Richter, A., Skov, H., Strong, K., Tarasick, D. W., Uttal, T., Vestenius, M., and Zhao, X., 2020: Pan-Arctic surface ozone: modelling vs. measurements, Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020.

Schneider, T., 2020: Impact of a changed turbulence parameterization for polar conditions in an Arctic regional climate model, Master thesis, Univ. Potsdam

Michaelis, J., 2020: Modelling and parametrization of turbulent convective processes over leads in sea ice (Doctoral dissertation), Universität Bremen. doi: 10.26092/elib/428

Lutsch, E., Strong, K., Jones, D. B. A., Blumenstock, T., Conway, S., Fisher, J. A., Hannigan, J. W., Hase, F., Kasai, Y., Mahieu, E., Makarova, M., Morino, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Poberovskii, A. V., Sussmann, R., and Warneke, T., 2020: Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem, Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020.

Seo, S., 2020: Retrieval and analysis of tropospheric bromine monoxide enhancements in polar regions using satellite measurements, Dissertation, Universität Bremen, https://doi.org/10.26092/elib/425

Rauterkus, R., and Ansorge, C., 2020: Cloud-Top Entrainment in Mixed-Phase Stratocumulus and Its Process-Level Representation in Large-Eddy Simulation, J. Atmos. Sci., 77(12), 4109-4127. https://doi.org/10.1175/JAS-D-19-0221.1.

Carlsen, T., Birnbaum, G., Ehrlich, A., Helm, V., Jäkel, E., Schäfer, M., and Wendisch, M., 2020: Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica, Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020.

Pefanis, V., Losa, S. N., Losch, M., Janout, M. A., & Bracher, A., 2020. Amplified Arctic surface warming and sea ice loss due to phytoplankton and colored dissolved material. Geophys. Res. Lett., 47, e2020GL088795, https://doi.org/10.1029/2020GL088795

Gierens, R., 2020: Observations of Arctic low-level mixed-phase clouds at Ny-Ålesund: Characterization and insights gained by high-resolution Doppler radar, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/53900.

Kretzschmar, J., Stapf, J., Klocke, D., Wendisch, M., and Quaas, J., 2020: Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic, Atmos. Chem. Phys., 20, 13145–13165, https://doi.org/10.5194/acp-20-13145-2020.

Seo, S., Richter, A., Blechschmidt, A.-M., Bougoudis, I., and Burrows, J. P., 2020: Spatial distribution of enhanced BrO and its relation to meteorological parameters in Arctic and Antarctic sea ice regions, Atmos. Chem. Phys., 20, 12285–12312, https://doi.org/10.5194/acp-20-12285-2020

Bougoudis, I., Blechschmidt, A.-M., Richter, A., Seo, S., Burrows, J. P., Theys, N., and Rinke, A., 2020: Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice, Atmos. Chem. Phys., 20, 11869–11892, https://doi.org/10.5194/acp-20-11869-2020.

M. Vountas, K. Belinska, V. V. Rozanov, L. Lelli, L. Mei, S. Jafariserajehlou, J. P. Burrows, 2020: Retrieval of aerosol optical thickness and surface parameters based on multi-spectral and multi-viewing space-borne measurements, J. Quant. Spectro. Rad. Trans., Volume 256, 107311, ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2020.107311.

Griesche, H. J., Seifert, P., Ansmann, A., Baars, H., Barrientos Velasco, C., Bühl, J., Engelmann, R., Radenz, M., Zhenping, Y., and Macke, A., 2020: Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106, Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020.

Radovan, A., 2020: Variability and trends of Arctic water vapour from passive microwave satellites – Special Role of Polar Lows and Atmospheric Rivers, Universität zu Köln, http://kups.ub.uni-koeln.de/id/eprint/53609.

Mech, M., Maahn, M., Kneifel, S., Ori, D., Orlandi, E., Kollias, P., Schemann, V., and Crewell, S., 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.

Leaitch, W. R., Kodros, J. K., Willis, M. D., Hanna, S., Schulz, H., Andrews, E., Bozem, H., Burkart, J., Hoor, P., Kolonjari, F., Ogren, J. A., Sharma, S., Si, M., von Salzen, K., Bertram, A. K., Herber, A., Abbatt, J. P. D., and Pierce, J. R., 2020: Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N, Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020.

Kovács, T., R. Gerdes, and J. Marshall, 2020: Wind Feedback Mediated by Sea Ice in the Nordic Seas. J. Climate, 33, 6621–6632, https://doi.org/10.1175/JCLI-D-19-0632.1

Yu, X., A. Rinke, W. Dorn, G. Spreen, C. Lüpkes, H. Sumata, and V. Gryanik, 2020: Evaluation of Arctic sea-ice drift and its dependency on near-surface wind and sea-ice concentration and thickness in the coupled regional climate model HIRHAM-NAOSIM, Cryosphere, 14, 1727–1746, doi:10.5194/tc-14-1727-2020.

Hartmann, M., Adachi, K., Eppers, O., Haas, C., Herber, A., Holzinger, R., Hünerbein, A., Jäkel, E., Jentzsch, C., van Pinxteren, M., Wex, H., and Stratmann, F. ,2020. Wintertime airborne measurements of ice nucleating particles in the high Arctic: a hint to a marine, biogenic source for Ice Nucleating Particles. Geophys. Res. Lett., 47, e2020GL087770. https://doi.org/10.1029/2020GL087770

Nomokonova, T., 2020:  Arctic cloud properties derived from ground-based sensor synergy at Ny-Ålesund, Universität zu Köln. https://kups.ub.uni-koeln.de/11377/

Mei, L., Rozanov, V., Burrows, J. P., 2020: A fast and accurate radiative transfer model for aerosol remote sensing, J. Quant. Spectrosc. Radiat. Transfer, 256, 107270, https://doi.org/10.1016/j.jqsrt.2020.107270

Stapf, J., Ehrlich, A., Jäkel, E., Lüpkes, C., and Wendisch, M., 2020: Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions, Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020.

Zeppenfeld, S., van Pinxteren, M., Engel, A., and Herrmann, H., 2020: A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) – combined with HPAEC-PAD, Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020.

Donth, T., Jäkel, E., Ehrlich, A., Heinold, B., Schacht, J., Herber, A., Zanatta, M., and Wendisch, M., 2020: Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic, Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020.

Triana-Gómez, A. M., Heygster, G., Melsheimer, C., Spreen, G., Negusini, M., and Petkov, B. H., 2020: Improved water vapour retrieval from AMSU-B and MHS in the Arctic, Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020.

Lu, J., 2020: Reducing Weather Influences on Sea Ice Concentration Retrieval Using Spaceborne 89 GHz Passive Microwave Observations, Dissertation, Universität Bremen, https://doi.org/10.26092/elib/389

Nakoudi, K.; Ritter, C.; Böckmann, C.; Kunkel, D.; Eppers, O.; Rozanov, V.; Mei, L.; Pefanis, V.; Jäkel, E.; Herber, A.; Maturilli, M.; Neuber, R. ,2020. Does the Intra-Arctic Modification of Long-Range Transported Aerosol Affect the Local Radiative Budget? (A Case Study). Remote Sens., 12, 2112, https://www.mdpi.com/2072-4292/12/13/2112.

Rostosky, P., 2020: Snow Depth on Arctic Sea Ice from Microwave Radiometers, Dissertation, Universität Bremen, https://doi.org/10.26092/elib/223

Nöthig E.-M., Ramendenc S., Haas A., Hehemann L., Walter A., Bracher A., Lalande C., Metfies K., Peeken I., Bauerfeind E., Boetius A., 2020: Summertime in situ chlorophyll a and particulate organic carbon standing stocks in surface waters of the Fram Strait and the Arctic Ocean (1991 – 2015). Frontiers in Marine Science 7: 350. doi: 10.3389/fmars.2020.00350 https://www.frontiersin.org/articles/10.3389/fmars.2020.00350/full

Spreen, G., L. de Steur, D. Divine, E. Hansen, S. Gerland, & R. Kwok, 2020: Arctic Sea Ice Volume Export through Fram Strait From 1992 to 2014. J. Geophys. Res. Oceans, 125, e2019JC016039. doi:10.1029/2019JC016039

C. Pohl, V. V. Rozanov, L. Mei, J. P. Burrows, G. Heygster, G. Spreen, 2020: Implementation of an ice crystal single-scattering propertydatabase in the radiative transfer model SCIATRAN, J. Quant. Spectrosc. Radiat. Transfer, doi: https://doi.org/10.1016/j.jqsrt.2020.107118

Michaelis, J., Lüpkes, C., Zhou, X., Gryschka, M., & Gryanik, V. M., 2020: Influence of lead width on the turbulent flow over sea ice leads: Modeling and parametrization. Journal of Geophysical Research: Atmospheres, 125, e2019JD031996. https://doi.org/10.1029/2019JD031996

Ludwig, V., G. Spreen, & L. T. Pedersen, 2020: Evaluation of a New Merged Sea-Ice Concentration Dataset at 1 km Resolution from Thermal Infrared and Passive Microwave Satellite Data in the Arctic. Remote Sens. , 12(19), 3183. doi:10.3390/rs12193183

van Pinxteren, M., Fomba, K. W., Triesch, N., Stolle, C., Wurl, O., Bahlmann, E., Gong, X., Voigtländer, J., Wex, H., Robinson, T.-B., Barthel, S., Zeppenfeld, S., Hoffmann, E. H., Roveretto, M., Li, C., Grosselin, B., Daële, V., Senf, F., van Pinxteren, D., Manzi, M., Zabalegui, N., Frka, S., Gašparović, B., Pereira, R., Li, T., Wen, L., Li, J., Zhu, C., Chen, H., Chen, J., Fiedler, B., von Tümpling, W., Read, K. A., Punjabi, S., Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Peeken, I., Rixen, T., Schulz-Bull, D., Monge, M. E., Mellouki, A., George, C., Stratmann, F., and Herrmann, H., 2020: Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign, Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020.

Mülmenstädt, J., C. Nam, M. Salzmann, J. Kretzschmar, T. S. L’Ecuyer, U. Lohmann, P.-L. Ma, G. Myhre, D. Neubauer, P. Stier, K. Suzuki, M. Wang and J. Quaas, 2020. Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes, Sci. Adv., Vol. 6, No. 22, eaaz6433, doi:10.1126/sciadv.aaz6433.

Sedlar, J., Tjernström, M., Rinke, A., Orr, A., Cassano, J., Fettweis, X., et al., 2020. Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. J. Geophys. Res. Atmos., 125. https://doi.org/10.1029/2019JD031783

Gryanik V.M., Lüpkes C., Grachev A., Sidorenko, D., 2020: New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models, J. Atmos. Sci., DOI: 10.1175/JAS-D-19-0255.1

Buschmann, M., 2020: Data Policy for the Transregional Collaborative Research Centre TR 172 ac, Zenodo, https://doi.org/10.5281/zenodo.7570329

D. Mewes and C. Jacobi, 2020: Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps, Atmosphere, vol. 11, no. 3, doi: 10.3390/atmos11030251.

Nomokonova, T., Ebell, K., Löhnert, U., Maturilli, M., and Ritter, C., 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund, Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020.

Ruiz-Donoso, E., Ehrlich, A., Schäfer, M., Jäkel, E., Schemann, V., Crewell, S., Mech, M., Kulla, B. S., Kliesch, L.-L., Neuber, R., and Wendisch, M., 2020: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event, Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020.

Lauer, M., K. Block, M. Salzmann, and J. Quaas, 2020: CO2-forced changes of Arctic temperature lapse-rates in CMIP5 models, Meteorolog. Zeitschrift, vol. 29, no. 1, pp. 79–93, doi: 10.1127/metz/2020/0975

Barrientos Velasco, C., Deneke, H., Griesche, H., Seifert, P., Engelmann, R., and Macke, A., 2020: Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice, Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020.

Gierens, R., S. Kneifel, M.D. Shupe, K. Ebell, M. Maturilli, and U. Löhnert, 2020: Low-level mixed-phase clouds in a complex Arctic environment, Atmos. Chem. Phys., 20, 3459-3481, doi:10.5194/acp-20-3459-2020

Rostosky, P., Spreen, G., Gerland, S., Huntemann, M., & Mech, M., 2020. Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals. Journal of Geophysical Research: Oceans, 125, e2019JC015465. https://doi.org/10.1029/2019JC015465

Scarlat, R. C., G. Spreen, G. Heygster, M. Huntemann, C. Patilea, L. Toudal Pedersen, and R. Saldo, 2020. Sea Ice and Atmospheric Parameter Retrieval From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With the CIMR Candidate Mission. J. Geophys. Res. Oceans, 125(3), e2019JC015749. https://doi.org/10.1029/2019JC015749

L. Mei, S. Vandenbussche, V. Rozanov, E. Proestakis, V. Amiridis, S. Callewaert, M. Vountas, J. P.Burrows, 2020, On the retrieval of aerosol optical depth over cryosphere using passive remote sensing, Remote Sensing of Enviroment, 241, 111731, https://doi.org/10.1016/j.rse.2020.111731.

Ehrlich A., Schäfer M., Ruiz-Donoso E., Wendisch M., 2020: Airborne Remote Sensing of Arctic Clouds. In: Kokhanovsky A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham, https://doi.org/10.1007/978-3-030-38696-2_2

Duarte, P., Sundfjord, A., Meyer, A., Hudson, S. R., Spreen, G., & Smedsrud, L. H., 2020. Warm Atlantic water explains observed sea ice melt rates north of Svalbard. J. Geophys. Res. Oceans, 125, e2019JC015662. https://doi.org/10.1029/2019JC015662

Dahlke, S., Hughes, N.E., Wagner, P.M., Gerland, S., Wawrzyniak, T., Ivanov, B., Maturilli, M., 2020. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Int J Climatol, 1–20. https://doi.org/10.1002/joc.6517

A. Kokhanovsky, C. Tomasi (eds.) including D. Chechin, A. Ehrlich, A. Herber, C. Lüpkes, Ch. Ritter, M. Wendisch, 2020, Physics and Chemistry of the Arctic Atmosphere, Springer Polar Sciences, https://doi.org/10.1007/978-3-030-33566-3

Dahlke, S., 2020: Rapid climate changes in the arctic region of Svalbard, PhD Thesis, University of Potsdam, https://publishup.uni-potsdam.de/frontdoor/index/index/docId/44554

Pradhan H. K., Völker C., Losa S. N., Bracher A., Nerger L. 2020: Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets. Journal of Geophysical Research Oceans, 125, e2019JC015586, https://doi.org/10.1029/2019JC015586

Akperov, M., V. Semenov, I. Mokhov, W. Dorn, and A. Rinke, 2020: Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations, Envir. Res. Lett., 15, 024009, https://doi.org/10.1088/1748-9326/ab6399

Metzner, E. P., Salzmann, M., and Gerdes, R. , 2020. Arctic Ocean Surface Energy Flux and the Cold Halocline in Future Climate Projections. J. Geophys. Res. Oceans, 125, e2019JC015554, doi:10.1029/2019JC015554.

Pohl, C., L. Istomina, S. Tietsche, E. Jäkel, J. Stapf, G. Spreen, and G. Heygster, 2020: Broadband albedo of Arctic sea ice from MERIS optical data,  The Cryosphere, 165-182, https://doi.org/10.5194/tc-14-165-2020

Welti, A., Bigg, E. K., DeMott, P. J., Gong, X., Hartmann, M., Harvey, M., Henning, S., Herenz, P., Hill, T. C. J., Hornblow, B., Leck, C., Löffler, M., McCluskey, C. S., Rauker, A. M., Schmale, J., Tatzelt, C., van Pinxteren, M., and Stratmann, F., 2020: Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans, Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020.

Ludwig, V.; Spreen, G.; Pedersen, L.T., 2020: Evaluation of a New Merged Sea-Ice Concentration Dataset at 1 km Resolution from Thermal Infrared and Passive Microwave Satellite Data in the Arctic. Rem. Sens., 12, 3183. https://doi.org/10.3390/rs12193183

Duarte, P., Sundfjord, A., Meyer, A., Hudson, S. R., Spreen, G., & Smedsrud, L. H., 2020. Warm Atlantic water explains observed sea ice melt rates north of Svalbard. J. Geophys. Res. Oceans, 125, e2019JC015662. https://doi.org/10.1029/2019JC015662

Karrer, M., Seifert, A., Siewert, C., Ori, D., von Lerber, A., & Kneifel, S., 2020. Ice particle properties inferred from aggregation modelling. J. Adv. Mod. Earth Sys., 12, e2020MS002066. https://doi.org/10.1029/2020MS002066

Schemann, V. and K. Ebell, 2020: Simulations of mixed-phase clouds with the ICON-LEM in the complex Arctic environment around Ny–Ålesund, Atmos. Chem. Phys., 20, 475–485, https://doi.org/10.5194/acp-20-475-2020

Pohl, C., V. Rozanov, M. Wendisch, G. Spreen, and G. Heygster, 2020: Impact of the near-field effects on radiative transfer simulations of the bidirectional reflectance factor and albedo of a densly packed snow layer, J. Quant. Spectrosc. Radiat. Transfer, 241, 106704, doi:10.1016/j.jqsrt.2019.106704

J. Cohen, X. Zhang, J. Francis, T. Jung, R. Kwok, J. Overland, T. Ballinger, U.S. Bhatt, H. W. Chen, D. Coumou, S. Feldstein, D. Handorf, G. Henderson, M. Ionita, M. Kretschmer, F. Laliberte, S. Lee, H. W. Linderholm, W. Maslowski, Y. Peings, K. Pfeiffer, I. Rigor, T. Semmler, J. Stroeve, P.C. Taylor, S. Vavrus, T. Vihma, S. Wang, M. Wendisch, Y. Wu, J. Yoon, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 10, 20–29, doi:10.1038/s41558-019-0662-y. https://www.nature.com/articles/s41558-019-0662-y

Ebell, K., T. Nomokonova, M. Maturilli, C. Ritter, 2020: Radiative effect of clouds at Ny-Ålesund, Svalbard, as inferred from ground-based remote sensing observations, J. Appl. Meteorol. Climatol., 59, 3-22, doi:10.1175/JAMC-D-19-0080.1

Sun, B., E. Jäkel, M. Schäfer, and M. Wendisch, 2020: A Biased Sampling Approach to Accelerate Backward Monte Carlo Atmospheric Radiative Transfer Simulations and its Application to Arctic Heterogeneous Cloud and Surface Conditions, Journal of Quantitative Spectroscopy & Radiative Transfer, Volume 240, January 2020, 106690, https://doi.org/10.1016/j.jqsrt.2019.106690

Block, K., F.A. Schneider, J. Mülmenstädt, M. Salzmann, and J. Quaas, 2020: Climate models disagree on the sign of total radiative feedback in the Arctic, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-14, doi:10.1080/16000870.2019.1696139

2019

Kokhanovsky, A.A., L. Lelli, F. Ducos, and R. Munro, 2019: A Simple Approximation for the Reflectance of a Thick Cloud in Gaseous Absorption Band and Its Application for the Cloud-Top Height Determination, IEEE Transactions on Geoscience and Remote Sensingdoi:10.1109/TGRS.2018.2883358

Dethloff, K., Handorf, D., Jaiser, R. and Rinke, A., 2019, Kältere Winter durch abnehmendes arktisches Meereis. Phys. Unserer Zeit, 50: 290-297. doi:10.1002/piuz.201901547

Ehrlich, A., M. Wendisch, C. Lüpkes, M. Buschmann, H. Bozem, D. Chechin, H.-C. Clemen, R. Dupuy, O. Eppers, J. Hartmann, A. Herber, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, L.-L. Kliesch, F. Köllner, M. Mech, S. Mertes, R. Neuber, E. Ruiz-Donoso, M. Schnaiter, J. Schneider, J. Stapf, and M. Zanatta, 2019: A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci. Data, https://doi.org/10.5194/essd-11-1853-2019

Kecorius, S., T. Vogl, P. Paasonen, J. Lampilahti, D. Rothenberg, H. Wex, S. ZeppenfeldM. van PinxterenM. Hartmann, S. Henning, X. Gong, A. Welti, M. Kulmala, F. StratmannH. Herrmann, and A. Wiedensohler, 2019: New particle formation and its effect on CCN abundance in the summer Arctic: a case study during PS106 cruise, Atmos. Chem. Phys., 19, 14339–14364, doi:10.5194/acp-19-14339-2019

Goren, T., J. Kazil, F. Hoffmann, T. Yamaguchi, and G. Feingold, 2019: Anthropogenic Air Pollution Delays Marine Stratocumulus Break‐up to Open‐Cells, Geophys. Res. Lett., https://doi.org/10.1029/2019GL085412

Mech, M., L.-L. Kliesch, A. Anhäuser, T. Rose, P. Kollias and S. Crewell, 2019: Microwave Radar/radiometer for Arctic Clouds MiRAC: First insights from the ACLOUD campaign, Atmos. Meas. Tech., 12, 5019–5037, doi:10.5194/amt-12-5019-2019

Radenz, M., J. Bühl, P. Seifert, H. Griesche, and R. Engelmann, 2019: peakTree: A framework for structure-preserving radar Doppler spectra analysis, Atmos. Meas. Tech.12, 4813–4828, doi:10.5194/amt-12-4813-2019

Kretzschmar, J., M. Salzmann, J. Mülmenstädt, and J. Quaas, 2019: Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes, Atmos. Chem. Phys.19, 10571–10589, doi:10.5194/acp-19-10571-2019

Rinke, A., B. Segger, S. Crewell, M. Maturilli, T. Naakka, T. Nygaard, T. Vihma, F. Alshawaf, G. Dick, and J. Wickert, and J. Keller, 2019: Trends of vertically integrated water vapor over the Arctic during 1979-2016: Consistent moistening all over? J. Clim., 32, 6096-6116, doi:10.1175/JCLI-D-19-0092.1

Akperov, M., A. Rinke, and 21 coauthors, 2019: Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Glob. Planet. Change182, 103005, doi:10.1016/j.gloplacha.2019.103005

Mei, L., Zhao, C., de Leeuw, G., Burrows, J. P., Rozanov, V., Che, H. Z., et al., 2019. A critical evaluation of Deep Blue algorithm derived AVHRR aerosol product over China. J. Geophys. Res. Atmospheres, 124, 12173– 12193. https://doi.org/10.1029/2018JD029929

Mei L., C. Zhao, G. de Leeuw, H. Che, Y. Che, V. Rozanov, M. Vountas, J. P. Burrows, 2019, Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption, Atmos. Res., Vol. 228, Pages 161-175, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2019.05.023.

Jacobi, H.-W., Obleitner, F., Da Costa, S., Ginot, P., Eleftheriadis, K., Aas, W., and Zanatta, M., 2019: Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling, Atmos. Chem. Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019.

Schranz, F., Tschanz, B., Rüfenacht, R., Hocke, K., Palm, M., and Kämpfer, N., 2019: Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund, Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019.

Muilwijk, M., Ilicak, M., Cornish, S. B., Danilov, S., Gelderloos, R., Gerdes, R., et al., 2019. Arctic Ocean response to Greenland Sea wind anomalies in a suite of model simulations. J. Geophys. Res. Oceans, 124, 6286– 6322. https://doi.org/10.1029/2019JC015101

Pradhan, H. K., Völker, C., Losa, S. N., Bracher, A., & Nerger, L., 2019. Assimilation of global total chlorophyll OC‐CCI data and its impact on individual phytoplankton fields. J. Geophys. Res. Oceans, 124, 470 – 490. https://doi.org/10.1029/2018JC014329

Chechin D.G., I.A. Makhotina, C. Lüpkes, and A.P. Makshtas, 2019: Effect of wind speed and leads on clear-sky cooling over Arctic sea ice during polar night, J. Atmos. Sci., 76, 2481-2503, doi:10.1175/JAS-D-18-0277.1

Dorn, W., A. Rinke, C. Köberle, K. Dethloff, and R. Gerdes, 2019: Evaluation of the sea-ice simulation in the upgraded version of the coupled regional atmosphere-ocean-sea ice model HIRHAM–NAOSIM 2.0, Atmosphere, 10, 431, doi:10.3390/atmos10080431

Vihma, T., R. Graversen, L. Chen, D. Handorf, N. Skific, J.A. Francis, N. Tyrrell, R. Hall, E. Hanna, P. Uotila, K. Dethloff, A.Y. Karpechko, H. Björnsson, J.E. Overland, 2019: Effects of the tropospheric large‐scale circulation on European winter temperatures during the period of amplified Arctic warming, accepted for publication in International Journal of Climatology, doi:10.1002/joc.6225

Ding, A., Z. Jiao, Y. Dong, X. Zhang, J.I. Peltoniemi, L. Mei, J. Guo, S. Yin, L. Cui, Y. Chang, and R. Xie, 2019: Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved Ross-Roujean BRDF Model, Remote Sensing11, 1611, doi:10.3390/rs11131611

Jonassen, M., Chechin, D., Karpechko, A., Lüpkes, C., Spengler, T., Tepstra, A., Vihma, T. and Zhang, X., 2020, Dynamical processes in the Arctic atmosphere, Kokhanovsky, A. A. and Tomasi, C. (editors), In: Physics and Chemistry of the Arctic Atmosphere, Physics and Chemistry of the Arctic Atmosphere, Springer, ISBN: 978-3-030-33566-3. hdl:10013/epic.fc6682df-a614-4b58-b184-4420eec2a6de

Patilea, C., 2019: Remote sensing of sea ice thickness from L-band microvave sensors on satellites, PhD Thesis, University of Bremen

Zeppenfeld, S., M. van Pinxteren, M. Hartmann, A. Bracher, F. Stratmann, and H. Herrmann, 2019: Glucose as a potential chemical marker for ice nucleating activity in Arctic seawater and melt pond samples, Environ. Sci. Technol., 53, 15, 8747–8756 https://doi.org/10.1021/acs.est.9b01469

Egerer, U.M. GottschalkH. SiebertA. Ehrlich, and M. Wendisch, 2019: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: First applications in the cloudy Arctic boundary layer, Atmos. Meas. Tech.doi:10.5194/amt-12-4019-2019

Jäkel, E.J. StapfM. WendischM. Nicolaus, W. Dorn, and A. Rinke, 2019: Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns, The Cryosphere13, 1695-1708, doi:10.5194/tc-13-1695-2019

Graham, R., P. Itkin , A. Meyer, A. Sundfjord, G. Spreen, L. H. Smedsrud, G. E. Liston, B. Cheng, L. Cohen, D. Divine, I. Fer, A. Fransson, S. Gerland, J. Haapala, S. R. Hudson, A. M. Johansson, J. King, I. Merkouriadi, A. K. Peterson, C. Provost, A. Randelhoff, A. Rinke, A. Rösel, N. Sennéchael, V. P. Walden, P. Duarte, P. Assmy, H. Steen, and M. A. Granskog, 2019: Winter storms accelerate the demise of sea ice in the Atlantic Sector of the Arctic Ocean, Scientific Reports 9, 9222, doi:10.1038/s41598-019-45574-5

Schacht, J., B. Heinold, J. Quaas, J. Backman, R. Cherian, A. Ehrlich, A. Herber, W.T.K. Huang, Y. Kondo, A. Massling, P.R. Sinha, B. Weinzierl, M. Zanatta, and I. Tegen, 2019: The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic, Atmos. Chem. Phys., 19, 11159–11183, https://doi.org/10.5194/acp-19-11159-2019

Rinke, A., E. Knudsen, D. Mewes, W. Dorn, D. Handorf, K. Dethloff, J.C. Moore, 2019: Arctic summer sea-ice melt and related atmospheric conditions in coupled regional climate model simulations, J. Geophys. Res., 124doi:10.1029/2018JD030207

Mei, L., V.V. Rozanov, H. Jethva, K.G. Meyer, L. Lelli, M. Vountas, and J.P. Burrows, 2019: Extending XBAER algorithm to aerosol and cloud condition, accepted for publication in IEEE Transactions on Geoscience and Remote Sensing, doi:10.1109/TGRS.2019.2919910

Graham, R., L. Cohen, N. Ritzhaupt, B. Segger, R. Graversen, A. Rinke, V.P. Walden, M.A. Granskog, S.R. Hudson, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early spring, accepted for publication in J. Clim., 32 (14), 4121-4143, doi:10.1175/JCLI-D-18-0643.1

Neggers, R. A. J., J. Chylík, U. Egerer, H. Griesche, V. Schemann, P. Seifert, H. Siebert and A. Macke, 2019:
Local and remote controls on Arctic mixed-layer evolution, accepted for publication in J. Adv. Mod. Earth Syst.doi:10.1029/2019MS001671

Álvarez E.,  Thoms S., Bracher A., Liu Y., Völker C., 2019: Modeling Photoprotection at Global Scale: The Relative Role of Nonphotosynthetic Pigments, Physiological State, and Species Composition. Global Biogeochem. Cycles, 33: 904-924. DOI: 10.1029/2018GB006101

Dorn, W., A. Rinke, C. Köberle, K. Dethloff, and R. Gerdes, 2019: Evaluation of the sea-ice simulation in the upgraded version of the coupled regional atmosphere-ocean-sea ice model HIRHAM–NAOSIM 2.0, Atmosphere, 10, 431, doi:10.3390/atmos10080431.

Fernandez, R.P., A. Carmona-Balea, C.A. Cuevas, J.A. Barrera, D.E. Kinnison, J.-F. Lamarque, C. Blaszczak-Boxe, K. Kim, W. Choi, T. Hay, A.-M. Blechschmidt, A. Schönhardt, J.P. Burrows, and A. Saiz-Lopez, 2019: Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, I) using the CAM-Chem Global Chemistry-Climate Model, accepted for publication in J. Adv. Model Earth Sy., doi:10.1029/2019MS001655

Radovan A., S. Crewell, E.M. Knudsen, and A. Rinke, 2019: Environmental conditions for polar low formation and development over the Nordic Seas: study of January cases based on the Arctic System Reanalysis, Tellus A71 (1), 1-16, doi:10.1080/16000870.2019.1618131

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Knudsen, E.M., and O.J. de Bolsée, 2019: The role of climate scientists in the post-factual society, Geoscience Communication2, 83–93, doi:10.5194/gc-2-83-2019

Romanowsky, E., D. Handorf, M. Rex, R. Jaiser, I. Wohltmann, W. Dorn, J. Ukita, J. Cohen, and K. Dethloff, 2019: The role of stratospheric ozone for Arctic-midlatitude linkages, Nature Scientific Reports, 9, Article 7962, doi:10.1038/s41598-019-43823-1

Seo, S., A. Richter, A.-M. Blechschmidt, I. Bougoudis, and J.P. Burrows, 2019: First high resolution BrO column retrievals from TROPOMI, Atmos. Meas. Tech., 12, 2913-2932, doi:10.5194/amt-12-2913-2019

Mei, L.L., V. Rozanov, R. Christoph, H. Bernd, Z.T. Jiao, M. Vountas, and J.P. Burrows, 2019: Retrieval of Aerosol Optical Thickness in the Arctic Snow-Covered Regions Using Passive Remote Sensing: Impact of Aerosol Typing and Surface Reflection Model, submitted to IEEE Transactions on Geoscience and Remote Sensing (under review)

Soppa, M.A., V. Pefanis, S. Hellmann, S.N. Losa, J. Hölemann, M.A. Janout, F. Martynov, B. Heim, T. Dinter, V. Rozanov, and A. Bracher, 2019: Assessing the Influence of Water Constituents on the Radiative Heating of Laptev Sea Shelf Waters, Frontiers in Marine Science6, Article 221, doi:10.3389/fmars.2019.00221

Oelker, J., A. Richter, T. Dinter, V.V. Rozanov, J.P. Burrows, and A. Bracher, 2019: Global diffuse attenuation coefficient derived from vibrational Raman scattering detected in hyperspectral backscattered satellite spectra, Optics Express, 27, 2, A829-A855, doi:10.1364/OE.27.00A829

Engel A., A. Bracher, T. Dinter, S. Endres, J. Grosse, K. Metfies, I. Peeken, J. Piontek, I. Salter, E.-M. Nöthig, 2019: Inter-annual variability of organic carbon concentrations across the Fram Strait (Arctic Ocean) during summer 2009 -2017, Frontiers in Marine Science. section Global Change and the Future Ocean6, 187, doi:10.3389/fmars.2019.00187

Semenov, A., X. Zhang, A. Rinke, W. Dorn, K. Dethloff, 2019: Arctic intense summer storms and their impacts on sea ice – a regional climate modeling study, Atmosphere, 10, 218, doi:10.3390/atmos10040218

Mei, L., J. Strandgren, V. Rozanov, M. Vountas, J. P. Burrows, and Y. J. Wang, 2019: Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction, Int. J. Remote Sens., 40 (18), 7084-7112, doi:10.1080/01431161.2019.1601279

Roode, S.R., T. Frederikse, A.P. Siebesma, A.S. Ackerman, J. Chylik, P.R. Field, J. Fricke, M. Gryschka, A. Hill, 2019: Turbulent transport in the gray zone: A large eddy model intercomparison study of the CONSTRAIN cold air outbreak case, Journal of Advances in Modeling Earth Systems, 11, 597– 623, doi:10.1029/2018MS001443

Wex, H., L. Huang, W. Zhang, H. Hung, R. Traversi, S. Becagli, R. Sheesley, C. Moffett, T. Barrett, R. Bossi, H. Skov, A. Hünerbein, J. Lubitz, M. Löffler, O. Linke, M. Hartmann, P. Herenz, and F. Stratmann, 2019: Annual variability of ice nucleating particle concentrations at different Arctic locations, Atmos. Chem. Phys., 19, 5293-5311, doi:10.5194/acp-19-5293-2019

Hartmann, M., T. Blunier, S.O. Brügger, J. Schmale, M. Schwikowski, A.Vogel, H.Wex, and F. Stratmann, 2019: Variation of Ice Nucleating Particles in the European Arctic over the Last Centuries, Geophysical Research Letters46 (7), 4007– 4016, doi:10.1029/2019GL082311

M. Vassel, L. Ickes, M. Maturilli, and C. Hoose, 2019: Classification of Arctic multilayer clouds using radiosonde and radar data in Svalbard, Atmos. Chem. Phys., 19, 5111–5126, doi:10.5194/acp-19-5111-2019

Andersen, H., J. Cermak, I. Solodovnik, L. Lelli, and R. Vogt, 2019: Spatiotemporal dynamics of fog and low clouds in the Namib unveiled with ground and space-based observations, Atmos. Chem. Phys., 19, 4383-4392, doi:10.5194/acp-19-4383-2019

Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, C. Ritter, and E. O’Connor, 2019: Statistics on clouds and their relation to thermodynamic conditions at Ny-Ålesund using ground-based sensor synergy, Atmos. Chem. Phys.19, 4105-4126, doi:10.5194/acp-19-4105-2019

Mewes, D., and C. Jacobi, 2019: Heat Transport Pathways into the Arctic and their Connections to Surface Air Temperatures, Atmos. Chem. Phys.19, 3927-3937, doi:10.5194/acp-19-3927-2019

Kulla, B.S., and C. Ritter, 2019: Water Vapor Calibration: Using a Raman Lidar and Radiosoundings to Obtain Highly Resolved Water Vapor Profiles, Remote Sensing11 (6), 616; doi:10.3390/rs11060616

Zanatta, M., H. Bozem, F. Köllner, J. Schneider, D. Kunkel, P. Hoor, J. de Faria, A. Petzold, U. Bundke, K. Hayden, R. M. Staebler, H. Schulz & A. B. Herber, 2019: Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect, Tellus B: Chemical and Physical Meteorology, 72:1, 1-24, DOI: 10.1080/16000889.2019.1695349

Pațilea, C., G. Heygster, M. Huntemann, and G. Spreen, 2019: Combined SMAP/SMOS Thin Sea Ice Thickness Retrieval. The Cryosphere13, 675-691, doi:10.5194/tc-13-675-2019

Schulz, H., H. BozemM. Zanatta, W.R. Leaitch, A.B. Herber, J. Burkart, M.D. Willis, P.M. Hoor, J.P.D. Abbatt, and R. Gerdes, 2019: High–Arctic aircraft measurements characterising black carbon vertical variability in spring and summer, Atmos. Chem. Phys., 19, 2361-2384, doi:10.5194/acp-19-2361-2019

Chechin, D.G. and C. Lüpkes, 2019: Baroclinic low-level jets in Arctic marine cold-air outbreaks, IOP Conf. Series: Earth and Environmental Science, 231, 012011, IOP Publishing, doi:10.1088/1755-1315/231/1/012011

Jafariserajehlou, S.L. MeiM. Vountas, V. Rozanov, J.P. Burrows, and R. Hollmann, 2019: A cloud identification algorithm over the Arctic for use with AATSR/SLSTR measurements, Atmos. Meas. Tech., 12, 1059-1076, doi:10.5194/amt-12-1059-2019

Jiao, Z., A. Ding, A. Kokhanovsky, C. Schaaf, F. Bréon, Y. Dong, Z. Wang, Y. Liu, X. Zhang, S. Yin, L. Cui, L. Mei, Y. Chang, 2019: Development of a Snow Kernel to Better Model the Anisotropic Reflectance of Pure Snow into a Kernel-Driven BRDF Model Framework, Remote Sensing Environment, 221, 198-209, doi:10.1016/j.rse.2018.11.001

Fritzner, S., R. Graversen, P. Rostosky, and K. Wang, 2019: Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean-sea ice modeling system. The Cryosphere, 13, 491-509, doi:10.5194/tc-13-491-2019

Liu, Y., E. Boss, A.P. Chase, H. Xi, X. Zhang, R. Röttgers, Y. Pan, and A. Bracher, 2019: Retrieval of phytoplankton pigments and functional types from underway spectrophotometry in the Fram Strait, Remote Sensing, 11(3), 318, doi:10.3390/rs11030318

Dethloff, K., D. Handorf, R. Jaiser, A. Rinke, P. Klinghammer, 2019: Dynamical mechanisms of Arctic amplification, Annals of New York Academy of Sciences, 1436, doi:10.1111/nyas.13698

Willis, M.D., H. Bozem, D. Kunkel, A.K.Y. Lee, H. Schulz, J. Burkart, A.A. Aliabadi, A.B. Herber, W.R. Leaitch, and J.P.D. Abbatt, 2019: Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition, Atmos. Chem. Phys., 19, 57-76, doi:10.5194/acp-19-57-2019

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. MaturilliM. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

Lüpkes, C., A. Schmitt and V. Gryanik, 2018: Turbulente  Energie- und Impulsflüsse in der atmosphärischen Grenzschicht über dem polaren Ozean, promet, 102, 61-74

Wendisch, M. and A. Ehrlich, 2018: Arktische Verstärkung und Wolken, promet, 102, 21-32

Dethloff, K., A. Rinke, D. Handorf, R. Jaiser, W. Dorn, A. Sommerfeld, 2018: Regionale und globale Wechselwirkung zwischen arktischem Meereis und der atmosphärischen Zirkulation, promet, 102, 14-20

Ritter, C., M. Angeles Burgos, C. Böckmann, D. Mateos, J. Lisok, K.M. Markowicz, B. Moroni, D. Cappelletti, R. Udisti, M. Maturilli, and R. Neuber, 2018: Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015, Tellus B70:1, 1-24, doi:10.1080/16000889.2018.1539618

Zhou, X., H. Matthes, A. Rinke, B. Huang, K. Yang, and K. Dethloff, 2019: Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model, Atmospheric Research, 217, 137-149, doi:10.1016/j.atmosres.2018.10.022

Leinonen, J., S. Kneifel, and R.J. Hogan, 2018: Evaluation of the Rayleigh–Gans Approximation for Microwave Scattering by Rimed Snowflakes, Q. J. Roy. Meteorol. Soc., doi:10.1002/qj.3093

Järvinen, E., O. Jourdan, D. Neubauer, B. Yao, C. Liu, M.O. Andreae, U. Lohmann, M. Wendisch, G.M. McFarquhar, T. Leisner, and M. Schnaiter, 2018: Additional global climate cooling by clouds due to ice crystal complexity, Atmos. Chem. Phys., 18, 15767-15781, doi:10.5194/acp-18-15767-2018

Pithan, F., G. Svensson, R. Caballero, D. Chechin, T.W. Cronin, A.M.L. Ekman, R. Neggers, M.D. Shupe, A. Solomon, M. Tjernström, and M. Wendisch, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes, Nature Geoscience, doi:10.1038/s41561-018-0234-1

M. Zanatta, P. Laj, M. Gysel, U. Baltensperger, S. Vratolis, K. Eleftheriadis, Y. Kondo, P. Dubuisson, V. Winiarek, S. Kazadzis, P. Tunved, and H.-W. Jacobi, 2018: Effects of mixing state on optical and radiative properties of black carbon in the European Arctic, Atmos. Chem. Phys. Disc., 18, 14037-14057, doi:10.5194/acp-2018-14037-2018

Rinke, A., D. Handorf, W. Dorn, K. Dethloff, J.C. Moore, X. Zhang, 2018: Atmospheric feedbacks on Arctic summer sea-ice anomalies in ensemble simulations of a coupled regional climate model, Advances in Polar Science, 29(3), doi:10.13679/j.advps.2018.3.00156

Rostosky, R.G. Spreen, S.L. Farrell, T. Frost, G. Heygster, and C. Melsheimer, 2018: Snow Depth Retrieval on Arctic Sea Ice From Passive Microwave Radiometers—Improvements and Extensions to Multiyear Ice Using Lower Frequencies, Journal of Geophysical Research: Oceans, 123, 7120–7138, doi:10.1029/2018JC014028

Schäfer, M., K. Loewe, A. Ehrlich, C. Hoose, M. Wendisch, 2018Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus, Atmos. Chem. Phys.18, 13115-13133,
doi:10.5194/acp-18-13115-2018

Che, Y., L. Mei, Y. Xue, J. Guang, L. She, and Y. Li, Y., 2018: Validation of Aerosol Products from AATSR and MERIS/AATSR Synergy Algorithms – Part 1: Global Evaluation. Remote Sens., 10, 1414, doi:10.3390/rs10091414

Dekhtyareva, A., K. Holmén, M. Maturilli, O. Hermansend and R. Graversen, 2018: Effect of seasonal mesoscale and microscale meteorological conditions in Ny-Ålesund on results of monitoring of long-range transported pollution, Polar Research, 37, 1508196, doi:10.1080/17518369.2018.1508196

Maturilli, M, and K. Ebell, 2018: Twenty-five years of cloud base height measurements by ceilometer in Ny-Ålesund, Svalbard, Earth Syst. Sci. Data, 10, 1451-1456, doi:10.5194/essd-10-1451-2018

Kodros, J.K., S.J. Hanna, A.K. Bertram, W.R. Leaitch, H. Schulz, A.B. Herber, M. Zanatta, J. Burkart, M.D. Willis, J.P.D. Abbatt, and J.R. Pierce, 2018: Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect, Atmos. Chem. Phys., 18, 11345-11361, doi:/10.5194/acp-18-11345-2018

Sato, K., J. Inoue, A. Yamazaki, J.-H. Kim, A. Makshtas, V. Kustov, M. Maturilli, and K. Dethloff , 2018: Impact on predictability of tropical and mid-latitude cyclones by extra Arctic observations, Nature Scientific Reports, 8, 12104, doi:10.1038/s41598-018-30594-4

He, S., Knudsen, E.M., Thompson, D.W.J., and Furevik, T., 2018: Evidence for predictive skill due to Arctic summertime sea-ice extent anomalies, Geophys. Res. Lett., 45, 9114-9122, doi:10.1029/2018GL078281

Khosravi, N., 2018: Space-borne Retrieval of Solar-induceed Plant Fluorescence and its Relationship to photosynthetic Parameters, PhD Thesis, University of Bremen, https://elib.suub.uni-bremen.de/peid=D00106682

Triana Gómez, A., G. Heygster, C. Melsheimer, and G. Spreen, 2018: Towards a Merged Total Water Vapour Retrieval from AMSU-B and AMSR-E Data in the Arctic Region, Proceedings of the “IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium,” IEEE, Valencia, 1818–1821, doi:10.1109/igarss.2018.8517863

Mei, L., V. Rozanov, M. Vountas, J.P. Burrows, 2018: The retrieval of ice cloud parameters from multi-spectral satellite observations of reflectance using a modified XBAER algorithm, Remote Sensing of Environment, 215, 128-144, doi:10.1016/j.rse.2018.06.007

Liu. Y., Roettgers R., Ramírez-Pérez M., Dinter T., Steinmetz F., Noethig E.-M., Hellmann S., Wiegmann S., Bracher A., 2018: Underway spectrophotometry in the Fram Strait (European Arctic Ocean): a highly resolved chlorophyll a data source for complementing satellite ocean color, Optics Express, 26, 14, A678, doi:10.1364/OE.26.00A678.
Data supplement is available here.

Malinka, A., E. Zege, L. Istomina, G. HeygsterG. Spreen, D. Perovich, and C. Polashenski, 2018: Reflective properties of melt ponds on sea ice. The Cryosphere, doi:10.5194/tc-12-1921-2018

Block, C., 2018: Aerosol-Cloud-Radiation interactions in regimes of liquid water clouds, PhD Thesis, University of Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-319314

Schranz, F., S. Fernandez, N. Kämpfer, and M. Palm, 2018: Diurnal variation in middle-atmospheric ozone observed by ground-based microwave radiometry at Ny-Ålesund over 1 year, Atmos. Chem. Phys., 18, 4113-4130, doi:10.5194/acp-18-4113-2018

Scarlat, R. C., C. Melsheimer, and G. Heygster, 2018: Retrieval of Total Water Vapour in the Arctic Using Microwave Humidity Sounders, Atmos. Meas. Tech.11, 2067-2084, doi:10.5194/amt-11-2067-2018

Lu, J., G. Heygster, and G. Spreen, 2018: Atmospheric Correction of Sea Ice Concentration Retrieval for 89 GHz AMR-E Observations, IEEE JSTARS,  11(5), 1442–1457, 10.1109/JSTARS.2018.2805193

M. Zahn, M. Akperov, A. Rinke, F. Feser, I.I. Mokhov, 2018: Trends of cyclone characteristics in the Arctic and their patterns from different re-analysis data, J. Geophys. Res., 123, 2737-2751, doi:10.1002/2017JD027439

Kreyling, D., Wohltmann, I., Lehmann, R., and Rex, M., 2018: The Extrapolar SWIFT model (version 1.0): Fast stratospheric ozone chemistry for global climate models, Geosci. Model Dev.11, 753-769, doi:10.5194/gmd-11-753-2018

Mei, L., V. Rozanov, M. Vountas, J.P. Burrows, and A. Richter, 2018: XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation, Atmospheric Chemistry and Physics, 18 (4), 2511–2523, doi:10.5194/acp-18-2511-2018

Gryanik, V.M. and Lüpkes, C., 2018: An efficient non-iterative bulk parametrization of surface fluxes for stable atmospheric conditions over polar sea ice, Bound.-Lay. Meteorol., 166, 301-325, doi:10.1007/s10546-017-0302-x

Akperov, A. Rinke, and the Arctic Cordex Team, 2018: Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX), J. Geophys. Res., 123, 2537-2554, doi:10.1002/2017JD027703

Itkin, P., G. Spreen, S.M. Hvidegaard, H. Skourup, J. Wilkinson, S. Gerland, and M.A. Granskog, 2018: Contribution of deformation to sea-ice mass balance: a case study from an N-ICE2015 storm, Geophys. Res. Lett.45, 789-796, doi:10.1002/2017GL076056

Vassel, M., “Arctic Multilayer Clouds”, Master thesis, MSc Meteorologie, Karlsruher Institut für Technologie (KIT), 2018

Lelli, L. and Vountas, M., 2018: Chapter 5 – Aerosol and Cloud Bottom Altitude Covariations From Multisensor Spaceborne Measurements, In Remote Sensing of Aerosols, Clouds, and Precipitation, edited by Tanvir Islam, Yongxiang Hu, Alexander Kokhanovsky and Jun Wang, Elsevier, pp 109-127, ISBN 9780128104378, https://doi.org/10.1016/B978-0-12-810437-8.00005-0

2017

Buschmann, M., 2017: Ground-based remote sensing of carbon dioxide and methane in the Arctic using Fourier-transform infrared spectrometry, PhD Thesis, University of Bremen, https://elib.suub.uni-bremen.de/edocs/00106555-1.pdf

Heymach, K., A. Rinke, and M. Wendisch, 2017: Klima-Aufzeichnungen – Climate Recording, Edition Lammerhuber, ISBN: 978-3903101425

Carlsen, T., Birnbaum, G., Ehrlich, A., Freitag, J., Heygster, G., Istomina, L., Kipfstuhl, S., Orsi, A., Schäfer, M., and Wendisch, M., 2017: Comparison of different methods to retrieve effective snow grain size in central Antarctica, Cryosph.11, 2727-2741, doi:10.5194/tc-2016-294
Data supplement is available here.

Dahlke, S. and Maturilli, M., 2017: Contribution of Atmospheric Advection to the Amplified Winter Warming in the Arctic North Atlantic Region, Adv. Meteorol., 2017, ID 4928620, doi: 10.1155/2017/4928620

Küchler, N., S. Kneifel, U. Löhnert, P. Kollias, H. Czekala, and T. Rose, 2017: A W-band radar-radiometer system for accurate and continuous monitoring of clouds and precipitation, J. Atmos.  Oceanic Technol., doi:10.1175/JTECH-D-17-0019.1

Kayser, M., Maturilli, M., Graham, R.M., Hudson, S.R., Rinke, A., Cohen, L., Kim, J.-H., Park, S.j., Moon, W., and Granskog, M.A., 2017: Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015), J. Geophys. Res. Atmos., 122, 10855-10872, doi:10.1002/2016JD02089

Lelli, L., V. V. Rozanov, M. Vountas, J. P. Burrows, 2017: Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering, J. Quant. Spect. Rad. Trans., 200, 70-89, doi:10.1016/j.jqsrt.2017.05.027

Jacobi, Ch., T. Ermakova, D. Mewes, and A.I. Pogoreltsev, 2017: El Niño influence on the mesosphere/lower thermosphere circulation at midlatitudes as seen by a VHF meteor radar at Collm (51.3°N, 13°E), Adv. Radio Sci., 15, 199-206, doi:10.5194/ars-15-199-2017

Ehrlich, A., Bierwirth, E., Istomina, L., and Wendisch, M., 2017: Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing, Atmos. Meas. Tech., 10, 3215-3230, doi:10.5194/amt-10-3215-2017
Data supplement is available here.

Rinke, A., M. Maturilli, R.M. Graham, H. Matthes, D. Handorf, L. Cohen, S.R. Hudson, and J.C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends, Envir. Res. Lett., 12, 094006, doi:10.1088/1748-9326/aa7def

Mei, L., V. Rozanov, M. Vountas, J. P. Burrows, R. C. Levy, W. Lotz, 2017: Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results, Rem. Sens. Environ., 197, 125-140, doi:10.1016/j.rse.2016.11.015

Mei, L., M. Vountas, L. Gómez-Chova, V. Rozanov, M. Jäger, W. Lotz, J. P. Burrows, R. Hollmann, 2017: A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data, Rem. Sens. Environ., 197, 141-160, doi:10.1016/j.rse.2016.11.016

Buchholz, R. R., Deeter, M. N., Worden, H. M., Gille, J., Edwards, D. P., Hannigan, J. W., Jones, N. B., Paton-Walsh, C., Griffith, D. W. T., Smale, D., Robinson, J., Strong, K., Conway, S., Sussmann, R., Hase, F., Blumenstock, T., Mahieu, E., and Langerock, B., 2017: Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC, Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017.

Taquet, N., Meza Hernández, I. Stremme, W., Bezanilla, A., Grutter, M., Campoin, R., Palm, M., and Boulestreix, T., 2017: Contiunous measurements of SiF4 and So2 by thermal emissions spectroscopy: Insight from a 6-month survy at the Popocatépetl volcano, J. Volcanol. Geoth. Res., 341, 255-268, doi:10.1016/j.volgeores.2017.05.009

Losa S., Soppa M. A., Dinter T., Wolanin A., Brewin R. J. W., Bricaud A., Oelker J., Peeken I., Gentili B., Rozanov. V. V., Bracher A., 2017: Synergistic exploitation of hyper- and multispectral precursor Sentinel measurements to determine Phytoplankton Functional Types at best spatial and temporal resolution (SynSenPFT), Front. Mar. Sci., 4:203, doi:10.3389/fmars.2017.00203
Data supplement is available here.

Buschmann, M., N.M. Deutscher, M. Palm, T. Warneke, C. Weinzierl, and J. Notholt, 2017: The arctic seasonal cycle of total column CO2 and CH4 from ground-based solar and lunar FTIR absorption spectrometry, Atmos. Meas. Tech., 10, 2397-2411, doi:10.5194/amt-10-2397-2017

Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, and M. A. Granskog, 2017: Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974–6983, doi:10.1002/2017GL073395

Rozanov V.V., T. Dinter, A.V. Rozanov, A. Wolanin, A. Bracher, Burrows J.P., 2017: Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic scattering processes: Software package SCIATRAN. J. Quant. Spectrosc. Rad. Transfer, 194, 65-85, doi:10.1016/j.jqsrt.2017.03.009

Stober, G., Matthias V. , Jacobi Ch., Wilhelm S., Höffner J., Chau J.L., 2017: Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys., 35, 711-720, doi:10.5194/angeo-35-711-201

Salzmann, M., 2017: The polar amplification asymmetry: Role of antarctic surface height, Earth Syst. Dynam., 8, 323-336, doi:10.5194/esd-8-323-2017

Schönhardt, A., Richter, A., Theys, N., and Burrows, J. P., 2017: Space based observation of volcanic iodine monoxide, Atmos. Chem. Phys., 17, 4857-4870, doi:10.5194/acp-2016-619

She, L., Mei, L., Xue, Y. Che, Y., and Guang, J., 2017: SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm, Remote Sens., 9, 253, doi:10.3390/rs9030253

Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and Wendisch, M., 2017: Directional, Horizontal Inhomogeneities of Cloud Optical Thickness Fields Retrieved from Ground-Based and Airborne Spectral Imaging, Atmos. Chem. Phys., 17, 2359-2372, 2017, doi:10.5194/acp-17-2359-2017
Data supplement is available here.

Barthlott, S., Schneider, M., Hase, F., Blumenstock, T., Kiel, M., Dubravica, D., García, O. E., Sepúlveda, E., Mengistu Tsidu, G., Takele Kenea, S., Grutter, M., Plaza-Medina, E. F., Stremme, W., Strong, K., Weaver, D., Palm, M., Warneke, T., Notholt, J., Mahieu, E., Servais, C., Jones, N., Griffith, D. W. T., Smale, D., and Robinson, J., 2017: Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra, Earth Syst. Sci. Data, 9, 15-29, doi:10.5194/essd-9-15-2017

Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803

Ebell, K., U. Löhnert, E. Päschke, E. Orlandi, J. H. Schween, and S. Crewell, 2017: A 1-D variational retrieval of temperature, humidity, and liquid cloud properties: performance under idealized and real conditions, J. Geophys. Res. Atmos., 122, 1746-1766, doi:10.1002/2016JD025945

Graham, R.M., A. Rinke, L. Cohen, S.R. Hudson, V.P. Walden, M.A. Granskog, W. Dorn, M. Kayser, M. Maturilli, 2017: A comparison of the two Arctic atmospheric winter states observed during N‐ICE2015 and SHEBA,  J. Geophys. Res. Atm., 122, 5716-5737, doi:10.1002/2016JD025475

Chechin, D. G. and Lüpkes, C., 2017: Boundary-layer development and low-level baroclonicity during high-latitude clod-air outbreaks: A simple model, Boundary-Layer Meteorol., 162, 91-116, doi:10.1007/s10546-016-0193-2

Korolev, A., G. McFarquhar; P. Field; C. Franklin; P. Lawson; Z. Wang; E. Williams; S. Abel; D. Axisa; S. Borrmann; J. Crosier; J. Fugal; M. Krämer; U. Lohmann; O. Schlenczek, M. Wendisch, 2017: Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 5: Mixed-Phase Clouds: Progress and Challenges, AMS Meteorological Monographs, 58, pp 5.1-5.50, doi:10.1175/AMSMONOGRAPHS-D-17-0001.1

Cziczo, D. J., Ladino, L., Boose, Y., Kanji, Z. A., Kupiszewski, P., Lance, S., Mertes, S., Wex., H., 2017:  Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 8: Measurements of Ice Nucleating Particles and Ice Residuals, AMS Meteorological Monographs, 58, 8.1-8.13, doi:10.1175/AMSMONOGRAPHS-D-16-0008.1

Bühl, J., Alexander, S., Crewell, S., Heymesfield, A., Kalesse, H., Khain, A., Maahn, M., van Tricht, K., Wendisch, M., 2017: Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Baumgardner, D., McFarquhar, G., and Heymsfield, A. (Eds.), Chapter 10: Remote Sensing, AMS Meteorological Monographs, 58, 10.1-10.21, doi:10.1175/AMSMONOGRAPHS-D-16-0015.1

2016

Overland, J., Dethloff, K., Francis, J., Hall, R., Hanna, E., Kim, S.-J., Screen, J., Shepherd, T., and Vihma, T., 2016: Nonlinear Response of Mid-latitude Weather to the Changing Arctic, Nature Clim. Change, 6, 992–999, doi:10.1038/nclimate3121

Schäfer, M., 2016: Optical Thickness Retrievals of Subtropical Cirrus and Arctic Stratus from Ground-Based and Airborne Radiance Observations Using Imaging Spectrometers, PhD Thesis, University of Leipzig, https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa-207395