

Leibniz-Institut für Troposphärenforschung

Leipzig Graduate School Clouds, Aerosols and Radiation (LGS-CAR)

Module name	The lapse-rate feedback in the Arctic
Number	LGS-CAR-14
Aims	Understanding of the processes that determine the temperature lapse rate in the Arctic; including clouds, the radiation budget, the surface energy budget, and large-scale advection. Modelling and observational approaches. Understanding of changes in a warming climate.
Basics	Processes determining the surface energy budget; inversion strength, mixing, and the role of clouds; free-tropospheric lapse rate and radiative-advective equilibrium; observations of changes
Contents	 Lecture: Arctic feedbacks and the role of the lapse-rate feedback (Nicole Feldl) Lecture: The lapse-rate feedback and Arctic processes (Kyle Armour) Lecture: What determines the surface temperature / surface energy budget (Kerstin Ebell and Marion Maturilli) Lecture: What determines the lack of mixing / role of mixed-phase clouds (Vera Schemann) Lecture: Modelling the role of clouds for the Arctic temperature profile across scales (Roel Neggers) Lecture: Moist intrusions and Arctic climate (Rodrigo Caballero)
Methods	Atmospheric modelling; In situ and remote sensing observations; re-analysis; theoretical considerations
Туре	Two-day block course (days 1/2 – lectures; day 3 – contributions/discussions) Virtual meeting, https://uni-leipzig.zoom.us/j/61609985250? pwd=cTdjVUJYaXQ2SVZVTWZXdTkwazE2Zz09 Meeting ID: 616 0998 5250; Passcode: 387493
Date	15 – 17 March 2021
Time	1.00 p.m. (Day 1) – 12.30 p.m. (Day 3)
Work load	16 hours presence / 50 hours self-study
Examination	Practical tasks during ATM (reporting about lectures, lead in discussions)
Credit points	2
Responsible scientists	Johannes Quaas
Guest lecturers	Rodrigo Caballero (U Stockholm) Nicole Feldl (University of California, Santa Cruz) Kyle Armour (University of Washington, Seattle)
Recommenda- tions for literature	Goosse et al. N Comm 2018; Block et al. Tellus 2020; Lauer et al. Met Z 2020

Leibniz-Institut für Troposphärenforschung

Program schedule

Monday, 15 March 2021

- 16.00 h Preparation of PhD candidate contributions (Johannes Quaas, Olivia Linke)
- 16.45 h Welcome, opening remarks (Johannes Quaas)
- 17.00 h Arctic feedbacks and the role of the lapse-rate feedback (Nicole Feldl)
- 17.45 h Discussion
- 18.00 h Break
- 18.15 h The lapse-rate feedback and Arctic processes (Kyle Armour)
- 19.00 h Discussion
- 19.15 h End day 1

Tuesday, 16 March 2021

- 9.30 h What determines the lack of mixing / role of mixed-phase clouds (Vera Schemann)
- 10.15 h Discussion
- 10.30 h Break
- 10.45 h What determines the surface temperature / surface energy budget (Marion Maturilli and Kerstin Ebell)
- 11.30 h Discussion
- 11.45 h Break
- 14.00 h Modelling the role of clouds for the Arctic temperature profile across scales (Roel Neggers)
- 14.45 h Discussion
- 15.00 h Break
- 15.15 h Moist intrusions and Arctic climate (Rodrigo Caballero)
- 16.00 h Discussion
- 16.15 h End day 2

Wednesday, 17 March 2021

- 9.30 h Breakout-group discussions
 (a) Surface temperature change
 (b) Inversion, mixing, and clouds
 (c) Free-tropospheric temperature change
- 11.00 h Break
- 11.30 h Reports
- 12.30 h Final discussion
- 13.00 h End