Snowfall and snow cover, and related feedback mechanisms

Annette Rinke, Susanne Crewell, Gunnar Spreen, Emiliano Orlandi

UNIVERSITÄT LEIPZIG

Universität Bremen

Hypothesis

E04

1 Summary

Exploiting long-term satellite data and regional climate model (RCM) simulations in an observation-to-model & model-to-observation approach allows to answer:

- What are the seasonal dependent regional patterns of snowfall, snowfall-toprecipitation ratio, snow cover, and their changes?
- What are the relationships between snowfall changes and atmospheric conditions

Changes in atmospheric conditions and sea-ice decline lead to consequences in regional snowfall patterns in the Arctic, which feed back to the sea ice.

and sea-ice decline and do they trigger any regional feedback mechanisms?

2 Research rationale

Motivation

- Longer-term precipitation changes are supposed to be predominately driven by warming and the associated moistening, while changes in cyclones may have greater influence on shorter-term precipitation changes
- Reanalyses reveal only few regions with significant trends in precipitation though the spatial patterns are not consistent among different reanalyses (Fig. 1)

Fig. 1: Annual precipitation trends (%/decade) from three reanalyses (MERRA, ERA-Interim, JRA-25) for 1981-2010 expressed as fraction of mean annual precipitation. From Lindsay et al. (2014).

Challenges

Feedback assessment of snow related processes is hindered by lack of observations covering snowfall, snow depth and coverage on land and sea ice

3 Research plan

WP1: Data compilation

Long-term microwave radiances (2000+), CloudSat (2006+), GPM radar reflectiv.

IGM, IUP

- Coupling of forward operator PAMTRA to RCM output
- Improved surface emissivity in PAMTRA & consistency analysis (obs. trend)

WP1

WP2: RCM Simulations

- Multi-year present-day **HIRHAM** simulations (ctrl, improved clouds)
- Short-term simulations for $(AC)^3$ campaigns, high-frequency output; sensitivity studies (resol., snowfall & cloud param.)
- Multi-year multi-model

observation-to-model

WP2

AWI-I

present-day climate simulations from the international Polar CORDEX project including two atmosphere-ice-ocean RCMs

- Microwave radiances provide long-term data record, but disentangling surface
 - and atmospheric signal is difficult (Fig. 2)
- Microwave signal depends on snow morphology (shape, size and density) both in the atmosphere and at the ground hampering retrievals

Fig. 2: Brightness temperatures at 90 GHz observed within 6 hours by operational weather satellites in March (left) and September (right), 2014. White line shows sea-ice extent.

Opportunities

Mean sea ice extent September 201

- Comprehensive long-term and growing microwave satellite radiance observations available for more than a decade
- Improved techniques for model evaluation and feedback attribution
- Complementary expertise covering regional climate modelling (Rinke), atmospheric remote sensing (Crewell) and sea ice (Spreen)

4 Role within $(AC)^3$ & perspectives

WP3: Evaluation of processes and feedback mechanisms

Climate-oriented evaluation multi-year present-day RCM simulations

- Observation-to-Model Approach

using CloudSat snowfall, terrestrial snow cover and snow water equivalent from GlobSnow, snow depth on sea ice (D03)

- Model-to-Observation Approach (forward operator; Fig. 3)

for microwave radiances, radar reflectivities at atm. observatories & CloudSat

Fig. 3: Joint histograms of radar reflectivity Z and *temperature from* CloudSat (left) and calculated from GCM output (right). From *Reitter et al. (2011).*

- Process-oriented evaluation investigating histograms of liquid/frozen precip. in dependence on environmental parameters, regions and seasons
- Temperature-stratification-clouds-snowfall feedback assessment composites of low & high pressure; snowfall-atmosph. thermodyn. structure
- Sea ice-moisture-clouds-snowfall feedback assessment composites of low & high sea-ice extent and low & high snowfall (or snow cover)

Collaborations within $(AC)^3$

- Detailed investigations of clouds (B–Cluster) and surface (C–Cluster) processes as well as role of atmospheric circulation (Cluster D) are used for the integrative assessment of snow characteristics in the Arctic
- RCM simulations and data base of microwave radiances are shared with B05
- Close collaboration with all projects of the E cluster on the integration of observations and models for better process & feedback understanding

Perspectives

- Assess aerosol-cloud-radiation feedback mechanisms and their links with atmospheric circulation and ice–ocean changes
- Exploit continuously & improving satellite data and long-term profiling data
- Derive cumulative snow depth on sea ice by combining snow precipitation ulletdata with satellite sea-ice drift and area data