Ny-Ålesund column thermodynamic structure, clouds, aerosols, radiative effects

Kerstin Ebell, Marion Maturilli, Justus Notholt Mathias Palm, Christoph Ritter

TRANSREGIO TR 172 | LEIPZIG | BREMEN | KÖLN

UNIVERSITÄT LEIPZIG

Universität Bremen

E02

1 Summary

Continuous Characterization of the Ny-Ålesund Column and

Radiative Effects from Ground-based Remote Sensing (CONCORD)

- Thermodynamic structure, clouds, aerosols, trace gases, and their radiative effects
- Implementation of integrated profiling methods (incl. uncertainty estimates) to quality controlled measurements by established and new instrumentation

Hypothesis

Ny-Ålesund, located in the warmest part of the Arctic, exhibits distinct radiative effects by clouds and aerosols and complements the information from other Arctic supersites.

• Long-term characteristics, temporal variability, connection to meteorological patterns

• Representativeness across other Arctic sites (supersites, campaigns)

2 Research rationale

Fig. 1: Map of Arctic atmospheric observatories and (AC)³ campaign activities.

Motivation

- Ny-Ålesund, Spitsbergen (Fig. 1), has a substantial history in thermodynamic, trace gas (Fig. 3), aerosol, and surface radiation observations
- Extension of instrumentation and observing techniques (CONCORD, Fig. 2) will allow to exploit the unique potential for deriving a whole suite of essential Arctic climate variables, including cloud macro- and microphysics (Fig.4)

3 Research plan

WP1: Improved ozone measurements and thin cloud products

- Extendend EM-FTIR observations \rightarrow aerosol amount and composition; cloud optical depth and effective radius • Extended OZORAM observations \rightarrow O₃ profile down to
- *Fig. 5: Schematic concept* ~20 km of the work package structure of project E02.
 - Combination of ABS–FTIR and OZORAM to retrieve a single
 - O_3 profile \rightarrow full O_3 profile from ground to mesosphere

WP2: Improved thermodynamic, cloud and aerosol products

	Input/Tools	Retrieved product
Improved T, q and LWP estimates	HATPRO, MiRAC, radiosonde + regression-based retrieval	 best estimate T and q profiles LWP, IWV best estimate LWP
Cloud macrophysics	synergistic analysis of thermodynamic profiles NWP model, MiRAC, MPL, KARL, LWP	vertically resolvedcloud maskcloud phase information
Cloud microphysics	cloud classification, LWP, MiRAC, HATPRO, MiRAC spectra analysis (E03) + empirical / 1D variational retrieval techniques	 liquid water content & droplet effective radius profiles ice water content & ice particle

Fig. 2: Schematic of Ny-Ålesund extended instrumentation and retrieval methods.

November 1, 2014, based on the IGM measurements

at the Jülich Observatory for Cloud Evolution.

Fig. 3: Rising HCl trend observed since 2007 at Ny-Ålesund by ABS-FTIR (from Mahieu et al., 2014, Nature).

Scientific questions:

- To what extent and with which accuracy can we gain insight into the thermodynamic, trace gas, aerosol and cloud properties at Ny-Ålesund?
- What is their impact on the radiation and energy budget throughout the vertical extent from the surface to the lower mesosphere?
- How representative are the Ny-Ålesund observations across other Arctic sites?

diameter profiles KARL, sunphotometer, ceilometer, MPL aerosol Aerosol properties + inversion technique size distribution refractive index optical depth WP3: Radiative effects of clouds, aerosols and trace gases

WP4: Representativeness

Connection to meteorological patterns • Ny-Ålesund thermodynamic state, aerosol, trace gases, cloud properties: processes on local and synoptic scales, physical feedback processes

Representativeness across Arctic sites Ny-Ålesund meteorology and trace gases comparison: campaigns, supersites, satellite data

4 Role within (AC)³ & perspectives

<u>Collaboration within $(AC)^3$ </u>

CONCORD observations and retrievals

as benchmark for model evaluation (B05, D01, D02, E01, E03, E04)

- as reference and validation data set for satellite and airborne retrieval algorithms (B01, B02, B03, C01)
- to complement and tie campaign experiments (A01, A02, B03, B06)

Perspectives

- Continuation of Ny-Ålesund measurements during $(AC)^3$ and beyond
- Value Added Products,
 - e.g. long-term statistical analysis \rightarrow model parameterizations
- Development and application of enhanced retrieval methods, e.g. combined FTIR and MWR retrieval for T, q, and clouds; combined ground-based/satellite retrieval
- Application of retrieval methods to **MOSAiC campaign** observations