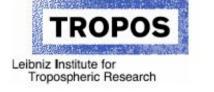
Assessment of Arctic feedback processes in climate models

Johannes Quaas, Roel Neggers



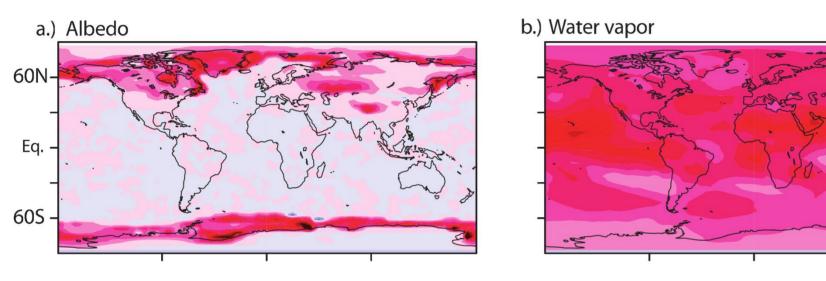
TRANSREGIO TR 172 | LEIPZIG | BREMEN | KÖLN

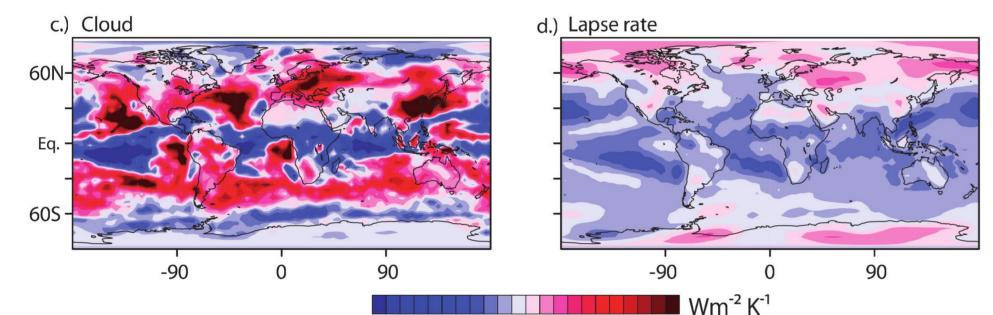
Universität Bremen

1 Summary

Hypothesis

Quantification and evaluation of feedback processes


Quantify feedback parameters in Arctic from CMIP5/6 multi-model ensemble and new simulations with the ICON GCM using partial-radiative-perturbation method
Process-oriented evaluation of the cloud feedback using large-eddy simulations, campaign observations and ground-based remote sensing


 Climate-oriented evaluation of feedback mechanisms using satellite-derived trends and model sensitivity studies We can quantitatively identify the important physical climate feedback mechanisms in the Arctic using state–of–the–art GCMs.

2 Research rationale

Feedback quantification from models

- Climate models include relevant processes
- Techniques have been developed for quantification
- Partial-radiative-perturbation most reliable and allows for cloud feedback assessment

3 Research plan

WP1 Arctic feedback quantification from climate models

- Use partial-radiative-perturbation to quantify feedback strength in the Arctic from CMIP5 multi-model ensemble
- Planck, lapse-rate, water vapour, surface albedo and cloud (disentangle components from fraction, height, optical thickness) feedback processes
 Idealised 4xCO₂ simulations, and period 1990 2019 from historical + RCP8.5
 Inter-model spread and methodological uncertainty

WP2 Cloud parameterisation assessment for Arctic

- Analyse different cloud parameterisations in ICON and HIRHAM simulations
 Model ensemble ICON R2B04 (~127 km), sensitivity study with two-way nest over Arctic to R2B06 (~40 km) for 2006 2015 period
- Two microphysics and three cloud parameterisations explored
- Evaluation with E02 column data at supersites and with E03 LES simulations
 Parameterisation improvement and test

WP3 Process-oriented feedback evaluation

• Apply climate modelling community satellite simulator (COSP)

-4 -2 0 2 4

Fig. 1: Geographical distribution of the feedback strength for the (a) surface albedo (b) water vapour, (c) cloud and (d) lapse rate feedback, from a six—year simulation with the MPI—ESM. From Klocke, Quaas and Stevens (Clim. Dyn. 2013).

Cloud feedback dominates uncertainty

• Most variable feedback

• Particularly challenging in the Arctic

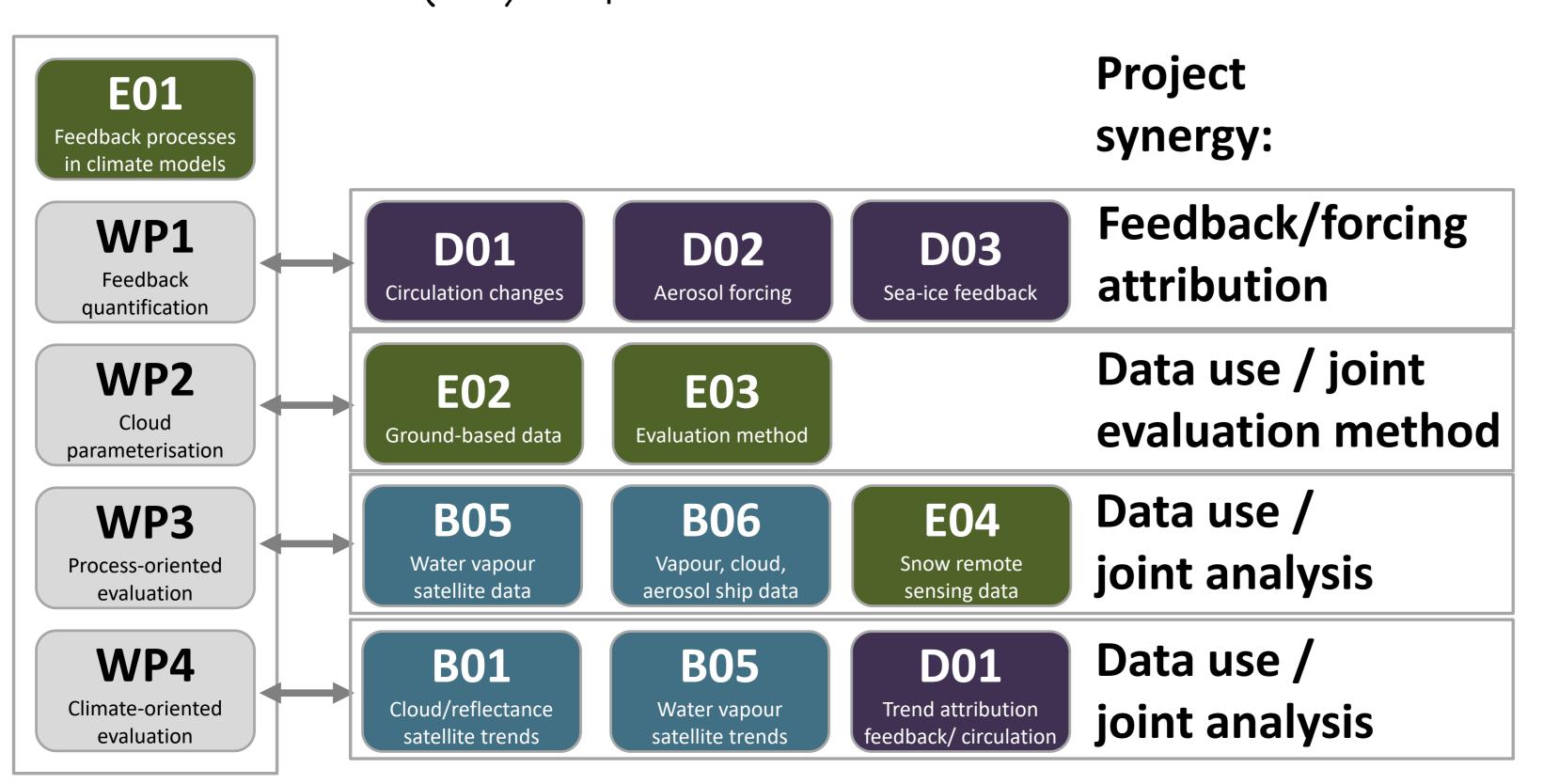
 Especially low-level, mixed-phase clouds are challenging and need improved parameterisations

Climate modelling as integrative tool

General circulation models simulate interaction of processes with others, and of processes with the general circulation in ocean and atmosphere
May be used for long-term integrations and climate projections
Help detection and attribution, hypothesis development

4 Role within (AC)³ & perspectives

<u>Collaboration within $(AC)^3$ </u>


• E01 provides large-scale context and modelling framework for feedback processes • E01 relies on data from $(AC)^3$ for process- and climate-oriented evaluation

Cloud feedback: Contoured frequency-altitude diagrams pre-industrial vs. present-day; comparison to satellite data for present-day

WP1BizigGuantification		 Planck: surface temperature vs. OLR, lapse rate: temperature profiles (B05), water vapour: surface temperature vs. vapour profile (B05, B06), surface albedo: snow- and sea ice cover variability (E04) 			
	WP3	Planck			
. <u>ס</u>	Process-	Lapse rate	WP4 Clin	nate-oriented feedback tion	
Leipzig	oriented	Water vapour	evalua		
	evaluation	Surface albedo		 Historical and RCP8.5-simulation 	
Köln		Cloud feedback	WP2	$\overline{\underline{o}} \rightarrow \text{temporal evolution of surface}$	
×			Parameterisation	temperatures and sea ice	
			Assessment	\rightarrow plus cloud, water vapour,	
		WP4 Climate-oriented evaluation	 Delineation from circulation changes (D01) Prediction of future evolution Close with WP1-3 for new simulations 		

Perspectives

• New parameterisations

- \rightarrow Test new and revised parameterisations from $(AC)^3$ in the ICON GCM
- More interactions
- → New, additional focus on ocean circulation
 → Intensified collaboration on sea-ice and snow interactions

- Deepen model evaluation using (AC)³ data
 → More detailed process-oriented evaluation
 → Comprehensive climate-oriented evaluation
- \rightarrow using long $(AC)^3$ time-series
- \rightarrow Use upcoming EarthCARE observations
- International cooperation
- → Make use of and contribute to upcoming 6th Coupled Model Intercomparison Project (IPCC 6th Assessment Report)

