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1. Summary Hypothesis

Research questions The lapse-rate feedback plays a key role in Arctic

In order to understand and quantify the lapse-rate feedback in the Arcti ips . :
n OTGET TO UNTErstant ant Guantily the lapse-rate Teechaticin the Arcte amplification. The impact from clouds, the surface
Q1 Drivers of muted free-tropospheric warming: Changes to components of

radiative-advective equilibrium in a warming climate? energy budget, and from meridional transports are

Q2 Temperature inversiqn a.nd lack of vertical mixing: Role of cIoud-’Fop cooling? key to better understand it.
Q3 Strong surface warming: Dependence on changes of the underlying surface?
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Fig. 1: (Left/middle) Multi-model time-mean mean feedback strengths (Block et al., Tellus, revised). scales ) .O‘uantlfy radl.atl.ve-adve.ctlve equmk?rlum
(Right) change in lapse-rate vs. inversion in control climate (Lauer et al., MetZ, revised). * ICON-GCM / CMIP6 multi-model context !N GCMs: radiative cooling, convective
. . . . . * High-resolution ICON-LEM simulations and turbulent heating; meridional
Detailed process analysis using LES and field campaign data driven by composite forcings based on ~ €Nergy transport
Significant low-level bias over sea ice in GCMs identified, corrected in LES forcings GCM data for present and future climate * Observational constraints from t°p'°f'3
e Turbulent transport counteracts cloud-top cooling and precipitation » Four target areas: open ocean, ice atmosphere radiation and HALO-(AC)
* Subsidence events responsible for cloud collapse margins, high Arctic, land masses
* Importance of cloud ice processes in total water budget * ICON-LEM and ICON-NWP simulations  \A\/P3 Cloud-top cooling &
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Fig. 2: ICON-LEM for a Cold Air Outbreak (CAO) case observed during the ACLOUD field campaign. rate feedback and Arctic amplification in ICON-LEM

Left: Simulated cloud liquid water path (shaded) using unadjusted (left) and adjusted (right) GCM-
derived forcings. Right panel: vertical profile as simulated by the ICON-LEM and in dropsonde data.
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