Modelling marine organic aerosol and its impact on clouds in the Arctic

Johannes Quaas, Bernd Heinold Jan Kretzschmar, Jacob Schacht

1. Summary

Role of aerosol and aerosol-cloud processes in the Arctic climate by global and Arctic-focused aerosol-climate modelling:

<u>Phase I</u>: long-range transport, black carbon (BC), and low-level-mixed-phase clouds <u>Phase II</u>: local marine aerosol sources and their impact clouds

Research questions:

- Q1 When including marine organic aerosol, and improving mixed-/ice-phase cloud microphysics, how much better is the model compared to new satellite and ship- and airborne observations?
- **Q2** What **feedback loop** involving marine organic aerosol and their impact on clouds is simulated by the revised model? What does this imply for Arctic amplification?

2. Achievements phase I

Aerosol transport and direct radiative properties

- Improvement of anthropogenic sources and long-range transport in the aerosol-climate model ECHAM6.3-HAM2.3.
- Quantification of BC direct radiative effects (DRE), albedo effect and uncertainties.
- Preliminary regional transport simulations, accompanying ACLOUD/PASCAL campaign.

Fig. 1: 2005–2015 annual mean of (a) BC column burden, (b) net all—sky DRE of BC at top-of-atmosphere, and (c) solar BC-in-snow albedo effect as computed with ECHAM-HAM (Schacht et al., ACP, 2019).

Improvement of clouds in GCM vs. satellite data

ECHAM overestimated low clouds over sea ice and snow (Fig. 2)

Key improvements:

- Retuned Bergeron-Findeisen process
- Allow for ice supersaturation
- Adjusted surface fluxes

Plus: Use of 1.2-km ICON-NWP for analysis of ACLOUD field campaign data

4. Role within $(AC)^3$ & perspectives

Collaborations within $(AC)^3$

- D02 plays key role to integrate progress in understanding of aerosol and aerosolcloud processes into modelling at regional and GCM scales.
- Key collaborations with **C03 for marine aerosol sources** and **E03 for cloud model representation**.
- D02 contributes to the cross-cutting activities 'lapse-rate' and 'surface-linkages'.

Hypothesis

A feedback loop between sea ice retreat, oceanic aerosol emissions, and clouds impacted by extra cloud condensation nuclei and ice nucleating particles enhances the Arctic amplification.

3. Research plan phase II

WP1: Aerosol-climate model ICON-HAM development

- Extend marine emission scheme to consider potentially ice-active species of marine primary organic aerosol (MPOA); present day setup.
- Key improvements to the representation of Arctic clouds building on D02 phase I; including Arctic MPOA as ice nucleating particles (INP).

WP2: Model evaluation with satellite observations

- Thorough evaluation and further improvement of ICON-HAM using new active satellite remote sensing retrievals together with $(AC)^3$ satellite projects.
- Examine extra marine aerosol as INP and the impact of boundary-layer dynamics, i.e., state of cloud-surface coupling.

WP3: Model evaluation with MOSAiC & HALO- $(AC)^3$ campaign data

- Process-level evaluation of inner-Arctic patterns in global and nested (40 \rightarrow 13 \rightarrow 5 km) ICON-HAM simulations using MOSAiC data.
- Investigate aerosol and cloud processes during meridional air mass exchange using $HALO-(AC)^3$ data.

WP4: Analysis of sea ice – aerosol – cloud – radiation feedback loop

- Evaluation of present-day conditions of marine aerosol and its impact on clouds and radiation (relative to total aerosol) with global ICON-HAM runs.
- Projections with ICON-HAM for different sea-ice cover to assess the hypothesised climate feedback loop.

<u>Perspectives</u>

- Exploit achievements of previous $(AC)^3$ phases.
- Include aerosols and aerosol-cloud interactions in **fully coupled atmosphere-ocean-sea ice climate simulations**.
- Conclusive evaluation of aerosol / aerosol-cloud processes in Arctic amplification based on D02, cross-cutting activities, and collaboration with cluster E.

COORDINATING

