Arctic aerosol, cloud and radiation from ground-based observations and simulations: The full annual cycle

Andreas Macke, Roel Neggers Carola Barrientos Velasco, Hannes Griesche

NSPORY

1. Summary

- Clouds and aerosol play an important role in Arctic feedback mechanisms
- Clouds dominate the radiative forcing at the sea ice/ocean surface
- It is not clear if clouds and aerosol on average further increase sea-ice melt or not in a changing Arctic and how the forcing depends on location and season
- We propose a detailed characterisation of Arctic aerosol and cloud properties as well as of aerosol-cloud interaction by means of state-of-the-art ground-based remote sensing, surface radiative energy measurements and high resolution modelling during MOSAiC

Research questions:

- Q1 To what extend does heterogeneous ice formation of Arctic clouds depend on aerosol types?
- Q2 Which processes dominate the structure of Arctic boundary layer clouds?
- Q3 Can we fully explain the observed radiation energy fluxes at the surface with the observed state of the atmosphere?

2. Achievements phase I

(1) Processing of PASCAL observations

Fig. 1: Cloudnet target classification for 7 June 2017, updated with a new class 'Fog' and temperature profile of the radiosonde launch at 10:48 UTC.

(2) LES evaluation

Fig. 2: Comparison of incoming radiation between LES and observations for 5 - 8 June 2017.

(4) Cloud coupling effects

Fig. 4: Fraction of ice-containing clouds vs. cloud-top temperature for surface-coupled and -decoupled Arctic clouds as well as for Leipzig and Punta Arenas.

WP1

ground-based

microphysics

WP2

aerosol, cloud

radiation correlation

WP3

closure studies

WP4

high res. cloud

(3) Model-observation radiation closure

Fig. 3: Closure study of observed and simulated incoming solar and terrestrial radiative fluxes for 7 June 2017 based on Rapid Radiative Transfer Model for GCM(RRTMG) simulations with Cloudnet and radiosonde data as input.

Hypothesis

Aerosol properties control the microphysical structure of Arctic clouds, while their macrophysical state predominantly reflects thermodynamic conditions

3. Research plan phase II

Heterogeneous ice formation in Arctic clouds

- Retrieval of cloud droplet and ice nuclei (CCN/INP) from lidar observations
- Relate the formation and state of clouds to their microphysical and thermodynamic forcing
- Characterize the microphysical and thermodynamic forcing under different meteorological regimes from model sensitivity studies

Structure of Arctic boundary layer clouds

- Constrain the factors causing the evolution of Arctic clouds from detailed observation and modelling of microphysical and thermodynamic forcing
- Multi-day Lagrangian LES during the MOSAiC drift
- LES budget studies to investigate controls on boundary layer evolution (Fig. 5)
- Humidity inversions: formation and impact on low-level clouds

Arctic cloud radiative effect

• Solar and terrestrial downward fluxes from direct observations and modelling based on observed cloud microphysical properties and spatial structure

Work packages

- WP1: Full-year multi-sensor remote sensing during MOSAiC with the OCEANET platform (TROPOS)
- WP2: Characterization of aerosol, clouds and heterogeneous ice formation & synopsis of remote sensing and in-situ observations (TROPOS, UNI-K)
- WP3: Aerosol, cloud and radiation closure (TROPOS, UNI-K)
- WP4: High-resolution simulations & hypothesis testing (UNI-K, TROPOS)

Fig. 5: Illustration of the processes controlling Arctic Mixed Layer (AML) evolution. Stage II depicts a cloud collapse induced by a strong subsidence event, as encountered in LES realizations based on observations from the Physical feedback of Arctic PBL, Sea ice, Cloud And AerosoL (PASCAL) campaign.

<u>Perspectives</u>

ice surface

Establish the causal relation between the state

Assess the Arctic aerosol/cloud/radiation

interaction in more detail based on EarthCARE

More realistic LES modeling of cloud radiative

• LES studies of **surface heterogeneity** impacts

Arctic boundary layer structure and

effects using **3D radiative transfer**

associated cloud-radiative interactions

of the atmosphere and the forcing at the sea

4. Role within $(AC)^3$ & perspectives

Major collaborations within $(AC)^3$

- **A02**: Assessing the role of thermodynamic profiles on cloud formation
- **B04**: Comparing aerosol and cloud in-situ observations and remote sensing
- **E01**: Climate effects of aerosol and clouds and lapse rate feedback

Cross-cutting activities within $(AC)^3$

- CCA1 Lapse-rate feedback: Local and remote causes for temperature inversions
- **CCA2 Surface processes**: Cloud radiative effects & microphysics for surface de/coupling
- **CCA3 Mixed-phase clouds**: INP and ice formation
- CCA4 Air mass transport & transformation: Large scale dynamics, Lagrangian LES

COORDINATING UNIVERSITY

A02

ground-based

B03

aerosol & surface

reflectance

D02

aerosol/cloud

A03

CO3

TOA radiation

E01

feedback

B04

in-situ CCN/IN

E02

Ny-Ålesund

E03

process level

observation

radiative forcing

modell evaluation

