E04: Moisture intrusions: Processes and climatological impacts

PIs: Susanne Crewell, Annette Rinke (former PI: Gunnar Spreen)

In the past phases of (AC)³ we established, based on case studies, a multi-observation, multi-model strategy to investigate precipitation, which uses both observation-to- model and model-to observation approaches to overcome the strong uncertainties in observations and models. We highlighted the importance of moisture intrusions for  precipitation in the Arctic, analyzed their relative contribution in relation to other synoptic features, and investigated air mass transformation processes and surface impacts. In phase III, we want to extend this towards a climatological view. In general, poleward atmospheric energy transport plays a critical role for Arctic temperature,  and changes in this transport are one of the underlying mechanisms of Arctic amplification. Besides long-term transport and its changes, also episodic variability is  relevant, which is particularly caused by events of warm and moist air intrusions from the midlatitudes into the Arctic. This project aims to contribute to an improved understanding of such moisture intrusion events and thereby occurring air mass transformation processes. We will analyze the spatiotemporal characteristics of the  vertical thermodynamic atmospheric structure during such events and their changes along the different paths and when passing the sea-ice edge. This analysis aims to  improve the understanding of the recycling of moisture via clouds and precipitation. We will particularly investigate the occurring precipitation in different phases (rain  and/or snow), which has rarely been studied, even though it can influence the sea-ice cover. Here, the HALO-(AC)³ campaign, novel snowfall retrievals, and various  available and upcoming new satellite and reanalysis data will be explored. Furthermore, we will quantify the impact of moisture intrusions on the surface energy budget via water vapor and cloud-radiation feedback processes. This has the potential to affect the sea ice (spring melt onset, autumn freezing delay, winter ice growth) and can  trigger climate feedbacks. Our study on moisture intrusions will be by means of both an event-based (MOSAiC, HALO-(AC)³) and climatological analysis, and we  combine both observations and modeling (ICON-LAM over circum-Arctic domain), and the Eulerian and Lagrangian approaches. Finally, future changes of moisture  intrusions into the Arctic and their impacts will be considered.

Hypothesis:

Moisture intrusions and related air mass transformations along the path into the Arctic lead to significant impacts on precipitation and surface energy budget, which  imply sea-ice feedbacks.

Specifically we want to answer the following questions:

  • How do air mass transformation processes during moisture intrusions affect the precipitation and its phase?
  • Which processes determine the impact of moisture intrusions on the surface energy budget?
  • What are potential changes in moisture intrusion characteristics and impact in the future?

The project will contribute to all three overarching Strategic Questions (SQ) within (AC )3 by investigating the contribution of moisture intrusions for Arctic amplification  (SQ1), analyzing the impact of transformation processes during moisture intrusions as an effect of Arctic–midlatitude connections (SQ2) and studying how  moisture intrusions will change in the future (SQ3). The emphasis is on impacts by precipitation and surface energy budget. The project coordinates CCA4 ”Air mass  transport and transformation” and integrates its own research with the knowledge gathered in various projects aiming to achieve a comprehensive picture of the role of  moisture intrusions in the Arctic climate system.

Achievemnets phase I

E04 investigated Arctic snowfall from measurements, reanalysis and modelling. For this purpose a consistent data set of CloudSat radar reflectivity and microwave brightness temperature, and synthetic satellite data from Regional Climate Model (RCM) simulations was built. We have developed and tested algorithms to describe the spatio-temporal features of snowfall using CloudSat data, including first regime identification. Furthermore, an improved knowledge about the differences in precipitation magnitude and phase, and their variability and trends among the commonly used global reanalyses and most recent high resolution Arctic System Reanalysis (ASRv2) has been achieved. The derivation of trend patterns of cyclone characteristics derived from an ensemble of reanalyses and an ensemble of RCMs has been done, allowing a quantification of uncertainty of recent changes and their representation in models (Akperov et al., 2018; Zahn et al., 2018).

Role within (AC)³

Collabortion Matrix Phase III_E04

Members

Sofie Tiedeck

PhD

Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research (AWI)
Telegrafenberg A45
14473 Potsdam

phone:

++49 (0) 331 58174 5217

e-mail:

sofie.krietenstein[at]awi.de

Dr. Annette Rinke

Principal Investigator

Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research (AWI)
Telegrafenberg A45
14473 Potsdam

phone:

++49 (0) 331 58174 5202

e-mail:

Annette.Rinke[at]awi.de

E04_Melanie_Lauer

Melanie Lauer

PhD

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 6236

e-mail:

melanie.lauer[at]uni-koeln.de

Prof. Dr. Susanne Crewell

Principal Investigator

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

phone:

++49 (0) 221 470 5286

e-mail:

susanne.crewell[at]uni-koeln.de

Former Members

Dr. Gunnar Spreen

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62190

e-mail:

gunnar.spreen[at]uni-bremen.de

vonlerberannakaisa

Dr. Annakaisa von Lerber

PostDoc (in phase I)

University of Cologne
Institute for Geophysics and Meteorology (IGM)
Pohligstr. 3
50969 Cologne

Publications

2024

2023

Ahmed, Shaddy, Thomas, Jennie L., Angot, Hélène, Dommergue, Aurélien, Archer, Stephen D., Bariteau, Ludovic, Beck, Ivo, Benavent, Nuria, Blechschmidt, Anne-Marlene, Blomquist, Byron, Boyer, Matthew, Christensen, Jesper H., Dahlke, Sandro, Dastoor, Ashu, Helmig, Detlev, Howard, Dean, Jacobi, Hans-Werner, Jokinen, Tuija, Lapere, Rémy, Laurila, Tiia, Quéléver, Lauriane L. J., Richter, Andreas, Ryjkov, Andrei, Mahajan, Anoop S., Marelle, Louis, Pfaffhuber, Katrine Aspmo, Posman, Kevin, Rinke, Annette, Saiz-Lopez, Alfonso, Schmale, Julia, Skov, Henrik , Steffen, Alexandra, Stupple, Geoff, Stutz, Jochen, Travnikov, Oleg, Zilker, Bianca, 2023; Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring. Elem. Sci. Anth.; 11 (1): 00129. doi: https://doi.org/10.1525/elementa.2022.00129

Lauer, M., Rinke, A., Gorodetskaya, I., Sprenger, M., Mech, M., and Crewell, S., 2023: Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic, Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023.

Kirbus, B.; Tiedeck, S.; Camplani, A.; Chylik, J.; Crewell, S.; Dahlke, S.; Ebell, K.; Gorodetskaya, I.; Griesche, H.; Handorf, D.; Höschel, I.; Lauer, M.; Neggers, R.; Rückert, J.; Shupe, M. D.; Spreen, G.; Walbröl, A.; Wendisch, M. & Rinke, A., 2023: Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1147848

Wendisch, M.; Brückner, M.; Crewell, S.; Ehrlich, A.; Notholt, J.; Lüpkes, C.; Macke, A.; Burrows, J. P.; Rinke, A.; Quaas, J.; Maturilli, M.; Schemann, V.; Shupe, M. D.; Akansu, E. F.; Barrientos-Velasco, C.; Bärfuss, K.; Blechschmidt, A.-M.; Block, K.; Bougoudis, I.; Bozem, H.; Böckmann, C.; Bracher, A.; Bresson, H.; Bretschneider, L.; Buschmann, M.; Chechin, D. G.; Chylik, J.; Dahlke, S.; Deneke, H.; Dethloff, K.; Donth, T.; Dorn, W.; Dupuy, R.; Ebell, K.; Egerer, U.; Engelmann, R.; Eppers, O.; Gerdes, R.; Gierens, R.; Gorodetskaya, I. V.; Gottschalk, M.; Griesche, H.; Gryanik, V. M.; Handorf, D.; Harm-Altstädter, B.; Hartmann, J.; Hartmann, M.; Heinold, B.; Herber, A.; Herrmann, H.; Heygster, G.; Höschel, I.; Hofmann, Z.; Hölemann, J.; Hünerbein, A.; Jafariserajehlou, S.; Jäkel, E.; Jacobi, C.; Janout, M.; Jansen, F.; Jourdan, O.; Jurányi, Z.; Kalesse-Los, H.; Kanzow, T.; Käthner, R.; Kliesch, L. L.; Klingebiel, M.; Knudsen, E. M.; Kovács, T.; Körtke, W.; Krampe, D.; Kretzschmar, J.; Kreyling, D.; Kulla, B.; Kunkel, D.; Lampert, A.; Lauer, M.; Lelli, L.; von Lerber, A.; Linke, O.; Löhnert, U.; Lonardi, M.; Losa, S. N.; Losch, M.; Maahn, M.; Mech, M.; Mei, L.; Mertes, S.; Metzner, E.; Mewes, D.; Michaelis, J.; Mioche, G.; Moser, M.; Nakoudi, K.; Neggers, R.; Neuber, R.; Nomokonova, T.; Oelker, J.; Papakonstantinou-Presvelou, I.; Pätzold, F.; Pefanis, V.; Pohl, C.; van Pinxteren, M.; Radovan, A.; Rhein, M.; Rex, M.; Richter, A.; Risse, N.; Ritter, C.; Rostosky, P.; Rozanov, V. V.; Donoso, E. R.; Saavedra-Garfias, P.; Salzmann, M.; Schacht, J.; Schäfer, M.; Schneider, J.; Schnierstein, N.; Seifert, P.; Seo, S.; Siebert, H.; Soppa, M. A.; Spreen, G.; Stachlewska, I. S.; Stapf, J.; Stratmann, F.; Tegen, I.; Viceto, C.; Voigt, C.; Vountas, M.; Walbröl, A.; Walter, M.; Wehner, B.; Wex, H.; Willmes, S.; Zanatta, M. & Zeppenfeld, S., 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)³ Project, Bull. Am. Meteorol. Soc., American Meteorological Society, 104, E208–E242, https://doi.org/10.1175/bams-d-21-0218.1

2022

von Lerber, A., Mech, M., Rinke, A., Zhang, D., Lauer, M., Radovan, A., Gorodetskaya, I., and Crewell, S., 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic, Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022.

Viceto, C., Gorodetskaya, I. V., Rinke, A., Maturilli, M., Rocha, A., and Crewell, S., 2022: Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model, Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022.

Shupe, M.D., M. Rex, B. Blomquist, P.O.G. Persson, J. Schmale, T. Uttal, D. Althausen, H. Angot, S. Archer, L. Bariteau, I. Beck, J. Bilberry, S. Bussi, C. Buck, M. Boyer, Z. Brasseur, I.M. Brooks, R. Calmer, J. Cassano, V. Castro, D. Chu, D. Costa, C.J. Cox, J. Creamean, S. Crewell, S. Dahlke, E. Damm, G. de Boer, H. Deckelmann, K. Dethloff, M. Dütsch, K. Ebell, A. Ehrlich, J. Ellis, R. Engelmann, A.A. Fong, M.M. Frey, M.R. Gallagher, L. Ganzeveld, R. Gradinger, J. Graeser, V. Greenamyer, H. Griesche, S. Griffiths, J. Hamilton, G. Heinemann, D. Helmig, A. Herber, C. Heuzé, J. Hofer, T. Houchens, D. Howard, J. Inoue, H.-W. Jacobi, R. Jaiser, T. Jokinen, O. Jourdan, G. Jozef, W. King, A. Kirchgaessner, M. Klingebiel, M. Krassovski, T. Krumpen, A. Lampert, W. Landing, T. Laurila, D. Lawrence, B. Loose, M. Lonardi, C. Lüpkes, M. Maahn, A. Macke, W. Maslowski, C. Marsay, M. Maturilli, M. Mech, S. Morris, M. Moser, M. Nicolaus, P. Ortega, J. Osborn, F. Pätzold, D.K. Perovich, T. Petäjä, C. Pilz, R. Pirazzini, K. Posman, H. Powers, K.A. Pratt, A. Preußer, L. Quéléver, M. Radenz, B. Rabe, A. Rinke, T. Sachs, A. Schulz, H. Siebert, T. Silva, A. Solomon, A. Sommerfeld, G. Spreen, M. Stephens, A. Stohl, G. Svensson, J. Uin, J. Viegas, C. Voigt, P. von der Gathen, B. Wehner, J.M. Welker, M. Wendisch, M. Werner, Z. Xie, F. Yue, 2022: Overview of the MOSAiC expedition – Atmosphere.  Elementa: Science of the Anthropocene, 10 (1): 00060, https://doi.org/10.1525/elementa.2021.00060.

Bresson, H., Rinke, A., Mech, M., Reinert, D., Schemann, V., Ebell, K., Maturilli, M., Viceto, C., Gorodetskaya, I., and Crewell, S., 2022: Case study of a moisture intrusion over the Arctic with the ICOsahedral Non-hydrostatic (ICON) model: resolution dependence of its representation, Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022.

2021

Wang, D.; Guo, J.; Xu, H.; Li, J.; Lv, Y.; Solanki, R.; Guo, X.; Han, Y.; Chen, T.; Ding, M.; Chen, A.; Bian, L. and Rinke, A., 2021. Vertical structures of temperature inversions and clouds derived from high-resolution radiosonde measurements at Ny-Alesund, Svalbard. Atm. Res., 254, 105530, 10.1016/j.atmosres.2021.105530

Inoue, J., Sato, K., Rinke, A., Cassano, J. J., Fettweis, X., Heinemann, G., et al., 2021. Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic Ocean. J. Geophys. Res.: Atmos., 126, e2020JD033904. https://doi.org/10.1029/2020JD033904

M. Akperov, W. Zhang, P. A. Miller, I. I. Mokhov, V. A. Semenov, H. Matthes, B. Smith and A. Rinke, 2021. Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model, Env. Res. Lett., 16, 064076, https://doi.org/10.1088/1748-9326/ac0566

Zhang, X., Fu, Y., Han, Z., J.E. Overland, A. Rinke, H. Tang, T. Vihma, and M.Y. Wang, 2021. Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Adv. Atmos. Sci. . https://doi.org/10.1007/s00376-021-1229-1

A. Rinke, J. J. Cassano, E. N. Cassano, R. Jaiser, D. Handorf, 2021; Meteorological conditions during the MOSAiC expedition: Normal or anomalous?. Elementa-Sci. Anthrop.  9 (1): 00023. doi: https://doi.org/10.1525/elementa.2021.00023

Crewell, S., Ebell, K., Konjari, P., Mech, M., Nomokonova, T., Radovan, A., Strack, D., Triana-Gómez, A. M., Noël, S., Scarlat, R., Spreen, G., Maturilli, M., Rinke, A., Gorodetskaya, I., Viceto, C., August, T., and Schröder, M., 2021: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021.

2020

Sedlar, J., Tjernström, M., Rinke, A., Orr, A., Cassano, J., Fettweis, X., et al., 2020. Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. J. Geophys. Res. Atmos., 125. https://doi.org/10.1029/2019JD031783

Karrer, M., Seifert, A., Siewert, C., Ori, D., von Lerber, A., & Kneifel, S., 2020. Ice particle properties inferred from aggregation modelling. J. Adv. Mod. Earth Sys., 12, e2020MS002066. https://doi.org/10.1029/2020MS002066

2019

Rinke, A., B. Segger, S. Crewell, M. Maturilli, T. Naakka, T. Nygaard, T. Vihma, F. Alshawaf, G. Dick, and J. Wickert, and J. Keller, 2019: Trends of vertically integrated water vapor over the Arctic during 1979-2016: Consistent moistening all over? J. Clim., 32, 6096-6116, doi:10.1175/JCLI-D-19-0092.1

Akperov, M., A. Rinke, and 21 coauthors, 2019: Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Glob. Planet. Change182, 103005, doi:10.1016/j.gloplacha.2019.103005

Graham, R., L. Cohen, N. Ritzhaupt, B. Segger, R. Graversen, A. Rinke, V.P. Walden, M.A. Granskog, S.R. Hudson, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early spring, accepted for publication in J. Clim., 32 (14), 4121-4143, doi:10.1175/JCLI-D-18-0643.1

Radovan A., S. Crewell, E.M. Knudsen, and A. Rinke, 2019: Environmental conditions for polar low formation and development over the Nordic Seas: study of January cases based on the Arctic System Reanalysis, Tellus A71 (1), 1-16, doi:10.1080/16000870.2019.1618131

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Knudsen, E.M., and O.J. de Bolsée, 2019: The role of climate scientists in the post-factual society, Geoscience Communication2, 83–93, doi:10.5194/gc-2-83-2019

2018

Knudsen, E.M., B. Heinold, S. Dahlke, H. Bozem, S. Crewell, I. V. Gorodetskaya, G. Heygster, D. Kunkel, M. MaturilliM. Mech, C. Viceto, A. Rinke, H. Schmithüsen, A. Ehrlich, A. Macke, C. Lüpkes, M. Wendisch, 2018: Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017, Atmos. Chem. Phys., 18, 17995-18022, doi:10.5194/acp-18-17995-2018

He, S., Knudsen, E.M., Thompson, D.W.J., and Furevik, T., 2018: Evidence for predictive skill due to Arctic summertime sea-ice extent anomalies, Geophys. Res. Lett., 45, 9114-9122, doi:10.1029/2018GL078281

M. Zahn, M. Akperov, A. Rinke, F. Feser, I.I. Mokhov, 2018: Trends of cyclone characteristics in the Arctic and their patterns from different re-analysis data, J. Geophys. Res., 123, 2737-2751, doi:10.1002/2017JD027439

Akperov, A. Rinke, and the Arctic Cordex Team, 2018: Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX), J. Geophys. Res., 123, 2537-2554, doi:10.1002/2017JD027703

Kayser, M., Maturilli, M., Graham, R.M., Hudson, S.R., Rinke, A., Cohen, L., Kim, J.-H., Park, S.j., Moon, W., and Granskog, M.A., 2017: Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015), J. Geophys. Res. Atmos., 122, 10855-10872, doi:10.1002/2016JD02089

Rinke, A., M. Maturilli, R.M. Graham, H. Matthes, D. Handorf, L. Cohen, S.R. Hudson, and J.C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends, Envir. Res. Lett., 12, 094006, doi:10.1088/1748-9326/aa7def

Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803

Project Poster

 Phase III Evaluation poster 2023

Project_E04_evaluation

 Phase II Evaluation poster 2019

E04_Poster_fin_pII

 Phase I Evaluation poster 2015

E04_Poster_fin_pI