B02: Remote sensing of aerosol properties and surface reflectance in the Arctic from satellite observations

The conditions in the Arctic have been changing significantly during the last decades when Arctic amplification. The changes from (i) the increase of temperature, and (ii) the changes in pollution emitted locally (e.g., human settlements, industry, increase in shipping), or transported to the Arctic from Europe, Asia or North America (e.g., urban agglomerations, industry and ires). The scientific objectives of B02 address the need to quantify the change in Aerosol Optical Thickness (AOT) and the surface spectral reflectance (SSR) during the evolving period of Arctic amplification. This will enable to answer questions such as: what has been, is and will be the relative importance of local sources and transported aerosol in the Arctic? The Arctic region is large and the number of ground-based measurements is small and sparsely distributed. Consequently, only satellite measurements can provide the unique and required long-term local regional coverage across the Arctic at high temporal sampling. Active remote sensing yields measurements during both night and day, but has much lower intrinsic coverage than daytime passive remote sensing. Consequently, in B02 we use long-term passive remote sensing observations from different satellite borne instrumentation made during the past four decades over the Arctic. Recognizing the different AOT retrieval challenges for high and low SSR for cloud free conditions, we developed in phase I inversion algorithms optimised for both conditions. In addition, the first analysis using AOT from the climate data record, obtained from the measurements of the Advanced Very-High-Resolution Radiometer (AVHRR) over open waters in the Arctic has been analyzed. This shows statistically significant AOT changes, e.g. in the Atlantic corridor, close to the Bering Strait and elsewhere.

Building on the retrieval algorithms developed and first geophysical analyses, in phase II the AOT and SSR record will be retrieved during polar day from different passive remote sensing observations. These will be validated by comparison with observations from ground-based and other satellite borne instruments. A consolidated data set will result. Having established the data quality, geophysical analyses of the different long term dat sets will be undertaken to establish the evolution of changes in AOT and SSR, their origins and consequences.

Hypothesis:

Changes in top of the atmosphere reflectance, measured by satellite instruments, yield the changes in aerosol and surface spectral reflectance in the Arctic.

In phase II we will answer the following questions related to the hypothesis:

  • What are the changes in the Aerosol Optical Thickness (AOT) and surface spectral reflectance (SSR) observed from space over the past decades?
  • Are these changes attributable to natural or anthropogenic origins, i.e. are predicted changes in agreement with the identified changes?

Achievements phase I

B02 exploits satellite data for detection of changes in Arctic aersosol. This is quite challenging and different approaches are needed from different surface types those spectral surface reflectance (SSR) is also of interest. Over the Arctic open waters a first long-term record of Aerosol Optical Thickness (AOT) covering a period of more than 35 years shows a significant increase of AOT over the Fram Strait during haze season, and over the Chuchki Sea during September. The record also indicate a significant increase of AOT over the northeast passage during July and September. Improved retrievals for dark to moderately bright surfaces, such as snow/ice-free land and ocean (Jafariserajehlou et al., 2019) were developed. Progress has also been made in the field of AOT/SSR retrievals over bright surfaces (snow/ice covered areas) with a novel retrieval, which benefits from improved knowledge of aerosol typing and SSR treatment.

Role within (AC)³

B02_coll

Members

Dr. Marco Vountas

Principal Investigator

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62106

e-mail:

vountas[at]iup.physik.uni-bremen.de

B01_Linlu_Mei

Dr. Linlu Mei

Postdoc

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62106

e-mail:

mei[at]iup.physik.uni-bremen.de

Soheila Jafariserajehlou

PhD

University of Bremen
Institute of Environmental Physics (IUP)
Otto-Hahn-Allee 1
28359 Bremen

phone:

++49 (0) 421 218 62136

e-mail:

jafari[at]iup.physik.uni-bremen.de

Prof. Dr. John P. Burrows

Principal Investigator

University of Bremen
Institute of Environmental Physics
Otto-Hahn-Allee 1
28334 Bremen

phone:

++49 (0) 421 218 62100

e-mail:

burrows[at]iup.physik.uni-bremen.de

Publications

2020

2019

Seo, S., Richter, A., Blechschmidt, A.-M., Bougoudis, I., and Burrows, J. P.: Spatial distribution of enhanced BrO and its relation to meteorological parameters in Arctic and Antarctic sea ice regions, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-996, in review, 2019.

Ding, A., Z. Jiao, Y. Dong, X. Zhang, J.I. Peltoniemi, L. Mei, J. Guo, S. Yin, L. Cui, Y. Chang, and R. Xie, 2019: Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved Ross-Roujean BRDF Model, Remote Sensing11, 1611, doi:10.3390/rs11131611

Mei, L., V.V. Rozanov, H. Jethva, K.G. Meyer, L. Lelli, M. Vountas, and J.P. Burrows, 2019: Extending XBAER algorithm to aerosol and cloud condition, accepted for publication in IEEE Transactions on Geoscience and Remote Sensing, doi:10.1109/TGRS.2019.2919910

Wendisch, M., A. Macke, A. Ehrlich, C. Lüpkes, M. Mech, D. Chechin, K. Dethloff, C. Barrientos, H. Bozem, M. Brückner, H.-C. Clemen, S. Crewell, T. Donth, R. Dupuy, C. Dusny, K. Ebell, U. Egerer, R. Engelmann, C. Engler, O. Eppers, M. Gehrmann, X. Gong, M. Gottschalk, C. Gourbeyre, H. Griesche, J. Hartmann, M. Hartmann, B. HeinoldA. Herber, H. Herrmann, G. Heygster, P. Hoor, S. Jafariserajehlou, E. Jäkel, E. Järvinen, O. Jourdan, U. Kästner, S. Kecorius, E.M. Knudsen, F. Köllner, J. Kretzschmar, L. Lelli, D. Leroy, M. Maturilli, L. Mei, S. Mertes, G. Mioche, R. Neuber, M. Nicolaus, T. Nomokonova, J. Notholt, M. Palm, M. van Pinxteren, J. Quaas, P. Richter, E. Ruiz-Donoso, M. Schäfer, K. Schmieder, M. Schnaiter, J. Schneider, A. Schwarzenböck, P. Seifert, M.D. Shupe, H. Siebert, G. Spreen, J. Stapf, F. Stratmann, T. Vogl, A. Welti, H. Wex, A. Wiedensohler, M. Zanatta, S. Zeppenfeld, 2019: The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteor. Soc., 100 (5), 841–871, doi:10.1175/BAMS-D-18-0072.1

Mei, L.L., V. Rozanov, R. Christoph, H. Bernd, Z.T. Jiao, M. Vountas, and J.P. Burrows, 2019: Retrieval of Aerosol Optical Thickness in the Arctic Snow-Covered Regions Using Passive Remote Sensing: Impact of Aerosol Typing and Surface Reflection Model, submitted to IEEE Transactions on Geoscience and Remote Sensing (under review)

Mei, L., J. Strandgren, V. Rozanov, M. Vountas, J. P. Burrows, and Y. J. Wang, 2019: Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction, Int. J. Remote Sens., 40 (18), 7084-7112, doi:10.1080/01431161.2019.1601279

Jafariserajehlou, S.L. MeiM. Vountas, V. Rozanov, J.P. Burrows, and R. Hollmann, 2019: A cloud identification algorithm over the Arctic for use with AATSR/SLSTR measurements, Atmos. Meas. Tech., 12, 1059-1076, doi:10.5194/amt-12-1059-2019

Jiao, Z., A. Ding, A. Kokhanovsky, C. Schaaf, F. Bréon, Y. Dong, Z. Wang, Y. Liu, X. Zhang, S. Yin, L. Cui, L. Mei, Y. Chang, 2019: Development of a Snow Kernel to Better Model the Anisotropic Reflectance of Pure Snow into a Kernel-Driven BRDF Model Framework, Remote Sensing Environment, 221, 198-209, doi:10.1016/j.rse.2018.11.001

2018

Che, Y., L. Mei, Y. Xue, J. Guang, L. She, and Y. Li, Y., 2018: Validation of Aerosol Products from AATSR and MERIS/AATSR Synergy Algorithms – Part 1: Global Evaluation. Remote Sens., 10, 1414, doi:10.3390/rs10091414

Mei, L., V. Rozanov, M. Vountas, J.P. Burrows, and A. Richter, 2018: XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation, Atmospheric Chemistry and Physics, 18 (4), 2511–2523, doi:10.5194/acp-18-2511-2018

Lelli, L. and Vountas, M., 2018: Chapter 5 – Aerosol and Cloud Bottom Altitude Covariations From Multisensor Spaceborne Measurements, In Remote Sensing of Aerosols, Clouds, and Precipitation, edited by Tanvir Islam, Yongxiang Hu, Alexander Kokhanovsky and Jun Wang, Elsevier, pp 109-127, ISBN 9780128104378, https://doi.org/10.1016/B978-0-12-810437-8.00005-0

Lelli, L., V. V. Rozanov, M. Vountas, J. P. Burrows, 2017: Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering, J. Quant. Spect. Rad. Trans., 200, 70-89, doi:10.1016/j.jqsrt.2017.05.027

Mei, L., V. Rozanov, M. Vountas, J. P. Burrows, R. C. Levy, W. Lotz, 2017: Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results, Rem. Sens. Environ., 197, 125-140, doi:10.1016/j.rse.2016.11.015

She, L., Mei, L., Xue, Y. Che, Y., and Guang, J., 2017: SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm, Remote Sens., 9, 253, doi:10.3390/rs9030253

Wendisch, M., M. Brückner, J. P. Burrows, S. Crewell, K. Dethloff, K. Ebell, Ch. Lüpkes, A. Macke, J. Notholt, J. Quaas, A. Rinke, and I. Tegen, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, doi:10.1029/2017EO064803

Project Poster

B02_Poster_fin_pII
B02_Poster_fin_pI